A NOTE ON FINITE REAL
MULTIPLE ZETA VALUES

Hideki MURAHARA
(Received 14 October 2015)

Abstract. We prove three theorems on finite real multiple zeta values: the symmetric formula, the sum formula and the height-one duality theorem. These are analogues of their counterparts on finite multiple zeta values.

1. Main theorems

For positive integers \(k_1, k_2, \ldots, k_n \) with \(k_1 \geq 2 \), the multiple zeta value (MZV) and the multiple zeta star value (MZSV) are defined by

\[
\zeta(k_1, k_2, \ldots, k_n) := \sum_{m_1 > m_2 > \cdots > m_n \geq 1} \frac{1}{m_1^{k_1} m_2^{k_2} \cdots m_n^{k_n}},
\]

\[
\zeta^*(k_1, k_2, \ldots, k_n) := \sum_{m_1 \geq m_2 \geq \cdots \geq m_n \geq 1} \frac{1}{m_1^{k_1} m_2^{k_2} \cdots m_n^{k_n}}.
\]

The finite real multiple zeta values (or symmetric multiple zeta values), which were first introduced by Kaneko and Zagier [9], are defined for any positive integers \(k_1, k_2, \ldots, k_n \) as follows:

\[
\zeta^\ast_F(k_1, k_2, \ldots, k_n) := \sum_{i=0}^{n} (-1)^{k_1+k_2+\cdots+k_i} \zeta^\ast(k_i, k_{i-1}, \ldots, k_1) \zeta^\ast(k_{i+1}, k_{i+2}, \ldots, k_n),
\]

\[
\zeta^\ast_X(k_1, k_2, \ldots, k_n) := \sum_{i=0}^{n} (-1)^{k_1+k_2+\cdots+k_i} \zeta^\ast(k_i, k_{i-1}, \ldots, k_1) \zeta^\ast_X(k_{i+1}, k_{i+2}, \ldots, k_n).
\]

Here, the symbols \(\zeta^\ast \) and \(\zeta^\ast_X \) on the right-hand sides stand for the regularized values coming from harmonic and shuffle regularizations respectively, i.e., real values obtained by taking constant terms of harmonic and shuffle regularizations as explained in [6]. In the sums, we understand \(\zeta^\ast(\emptyset) = \zeta^\ast_X(\emptyset) = 1 \).

Let \(\mathbb{Z} \) be the \(\mathbb{Q} \)-vector subspace of \(\mathbb{R} \) spanned by the MZVs. It is known that this is a \(\mathbb{Q} \)-algebra. In [9], Kaneko and Zagier proved that the difference \(\zeta^\ast_F(k_1, k_2, \ldots, k_n) - \zeta^\ast_X(k_1, k_2, \ldots, k_n) \) is in the principal ideal of \(\mathbb{Z} \) generated by \(\zeta(2) \) (or \(\pi^2 \)), in other words, that the congruence

\[
\zeta^\ast_F(k_1, k_2, \ldots, k_n) \equiv \zeta^\ast_X(k_1, k_2, \ldots, k_n) \pmod{\zeta(2)}
\]

2010 Mathematics Subject Classification: Primary 11M32; Secondary 05A19.

Keywords: finite real multiple zeta values.
holds in \(Z \). They then defined the finite real multiple zeta value (FRMZV) \(\zeta_F(k_1, k_2, \ldots, k_n) \) as an element in the quotient ring \(Z/\zeta(2) \) by
\[
\zeta_F(k_1, k_2, \ldots, k_n) := \zeta^*_F(k_1, k_2, \ldots, k_n) \pmod{\zeta(2)}.
\]
We also refer to the values \(\zeta^*_F(k_1, k_2, \ldots, k_n) \) and \(\zeta^{sh}_F(k_1, k_2, \ldots, k_n) \) as (harmonic and shuffle versions of) FRMZVs.

In this paper, we prove the following theorems.

Theorem 1.1. (Symmetric formula) Let \((k_1, k_2, \ldots, k_n) \) be any index set \((k_i \in \mathbb{N}) \) and let \(S_n \) be the symmetric group of degree \(n \). Then, we have
\[
\sum_{\sigma \in S_n} \zeta_F(k_{\sigma(1)}, k_{\sigma(2)}, \ldots, k_{\sigma(n)}) = 0 \quad \text{(in } Z/\zeta(2) \text{)}.
\]

Theorem 1.2. (Sum formula) Let \((k_1, k_2, \ldots, k_n) \) be any index set \((k_i \in \mathbb{N}) \). For positive integers \(k, n \) and \(i \) with \(1 \leq i \leq n \leq k-1 \), we have
\[
\sum_{k_1+k_2+\cdots+k_n=k, k_i \geq 2} \zeta^*_F(k_1, k_2, \ldots, k_n) \equiv (-1)^{i-1} \left(\binom{k-1}{i-1} + (-1)^n \binom{k-1}{n-i} \right) \zeta(k) \pmod{\zeta(2)},
\]
where the congruences are mod \(\zeta(2) \) in the \(\mathbb{Q} \)-algebra \(Z \).

Theorem 1.3. (Height-one duality theorem) For positive integers \(k \) and \(n \), we have the equality
\[
\zeta_F(k, 1, \ldots, 1) = \zeta_F(n, 1, \ldots, 1)
\]
in \(Z/\zeta(2) \).

2. **Proofs**

2.1. **Proof of Theorem 1.1**

Let \(k_1, k_2 \) and \(k \) be any index sets. We note that the FRMZVs \(\zeta^*_F(k_1, k_2, \ldots, k_n) \) satisfy the harmonic product rule:
\[
\zeta^*_F(k_1) \zeta^*_F(k_2) = \zeta^*_F(k_1 * k_2),
\]
where the right-hand side is a linear combination of \(\zeta^*_F(k) \) coming from the harmonic product in [4], e.g., \(\zeta^*_F(2 * 2) = 2\zeta^*_F(2, 2) + \zeta^*_F(4) \).

Hoffman’s theorem [5, Theorem 4.1] states that any symmetric sum
\[
\sum_{\sigma \in S_n} \zeta^*_F(k_{\sigma(1)}, k_{\sigma(2)}, \ldots, k_{\sigma(n)})
\]
is a polynomial in the Riemann zeta values \(\zeta(k) \). His proof only uses the harmonic product rule of MZVs, and hence applies to our \(\zeta^*_F(k) \). Therefore, we conclude in a similar manner as in [3, 5] that the symmetric sum above is a sum of products of \(\zeta^*_F(k) = (1 + (-1)^k)\zeta(k) \), which is 0 when \(k \) is odd and a multiple of \(\zeta(2) \) when \(k \) is even.
Remark. One can also prove Theorem 1.1 directly by using the definition. For example, we compute

\[
\sum_{\sigma \in S_3} \xi_{F}^{*}(k_{\sigma(1)}, k_{\sigma(2)}, k_{\sigma(3)})
\]

\[
= (1 + (-1)^{k_1})(1 + (-1)^{k_2})(1 + (-1)^{k_3}) \sum_{\sigma \in S_3} \xi_{F}^{*}(k_{\sigma(1)}, k_{\sigma(2)}, k_{\sigma(3)})
\]

\[
+ ((-1)^{k_1} + (-1)^{k_2})(1 + (-1)^{k_3})(\xi(k_1 + k_2, k_3) + \xi^{*}(k, k_1 k_3))
\]

\[
+ ((-1)^{k_1} + (-1)^{k_3})(1 + (-1)^{k_2})(\xi(k_1 + k_3, k_2) + \xi^{*}(k, k_1 + k_3))
\]

\[
+ ((-1)^{k_2} + (-1)^{k_3})(1 + (-1)^{k_1})(\xi(k_2 + k_3, k_1) + \xi^{*}(k, k_1 + k_2 + k_3)).
\]

When the weight (= sum of the indices) \(k \) is odd, the coefficients \((1 + (-1)^{k_1})(1 + (-1)^{k_2})(1 + (-1)^{k_3}) \) becomes 0 if at least one \(k_i \) is odd. When all \(k_i \) are even, then \(\sum_{\sigma \in S_3} \xi^{*}(k_{\sigma(1)}, k_{\sigma(2)}, k_{\sigma(3)}) = \xi^{*}(k_1)\xi^{*}(k_2)\xi^{*}(k_3) - \xi(k_1 + k_2)\xi^{*}(k_3) - \xi(k_1 + k_3)\xi^{*}(k_2) - \xi(k_2 + k_3)\xi^{*}(k_1) + 2\xi(k_1 + k_2 + k_3) \) is 0 modulo \(\xi(2) \). As for the term \(((-1)^{k_1} + (-1)^{k_2})(1 + (-1)^{k_3})(\xi(k_1 + k_2, k_3) + \xi^{*}(k, k_1 k_3)) \), etc., if we write this as \(((-1)^{k_1} + (-1)^{k_2})(1 + (-1)^{k_3})(\xi(k_1 + k_2)\xi^{*}(k_3) - \xi(k_1 + k_2 + k_3)) \), we see that either \(((-1)^{k_1} + (-1)^{k_2})(1 + (-1)^{k_3}) = 0 \) or \((\xi(k_1 + k_2)\xi^{*}(k_3) - \xi(k_1 + k_2 + k_3)) \) is a multiple of \(\xi(2) \).

2.2. Proof of Theorem 1.2

We can prove Theorem 1.2 in the same manner as in [11]. Set

\[
S_{k,n,i} := \sum_{k_1 + k_2 + \cdots + k_n = k \atop k_i \geq 2} \xi_{F}^{*}(k_1, k_2, \ldots, k_n).
\]

We notice that the harmonic version of the FRMZVs satisfy the harmonic product rule. Thus, \(S_{k,n,i} \) enjoy the recursion relation in the following lemma, which can be proved in the same way as in [11, Proposition 2.2].

Lemma 2.1. For positive integers \(k, n \) and \(i \) with \(2 \leq i + 1 \leq n \leq k - 1 \), we have

\[
(n - i)S_{k,n,i} + iS_{k,n,i+1} + (k - n)S_{k,n-1,i} = 0.
\]

We prove Theorem 1.2 by backward induction on \(n \). To do this, we need the initial value.

Lemma 2.2. For positive integers \(k \) and \(i \) with \(1 \leq i \leq k - 1 \), we have

\[
S_{k,k-1,i} \equiv (-1)^{i-1} \binom{k}{i} \frac{\zeta(k)}{2} \pmod{\zeta(2)}.
\]
Proof. Since \(S_{k,k-1,i} = \xi^g_X(1, \ldots, 1, 2, 1, \ldots, 1) \), we compute \(\xi^g_F(1, \ldots, 1, 2, 1, \ldots, 1) \) instead. Because of the fact that \(\xi^g_F(1, \ldots, 1) = 0 \), we have by definition that

\[
S_{k,k-1,i} \equiv \xi^g_F(1, \ldots, 1, 2, 1, \ldots, 1) \pmod{\xi(2)}
\]

\[
= \xi^g(1, \ldots, 1, 2, 1, \ldots, 1) + (-1)^k \xi^g(1, \ldots, 1, 2, 1, \ldots, 1).
\]

By using [6, equation (5.2)] for \(w_0 = x y^j \), we have \(\xi^g(1, \ldots, 1, 2, 1, \ldots, 1) = (-1)^m \binom{m+l}{l} \xi(2, 1, \ldots, 1) \). Thus,

\[
S_{k,k-1,i} \equiv (-1)^{i-1} \left(\binom{k-1}{i-1} + \binom{k-1}{i} \right) \xi(2, 1, \ldots, 1) \pmod{\xi(2)}.
\]

Let us consider the case \(n = k-1 \) of Theorem 1.2. If \(k \) is even, the identity holds from Lemma 2.2. If \(k \) is odd, then \(n \) is even and the identity again follows because

\[
\binom{k-1}{i-1} + (-1)^n \binom{k-1}{n-i} = \binom{k-1}{i-1} + \binom{k-1}{i} = \binom{k}{i}.
\]

We assume the identity holds for \(n \). By Lemma 2.1,

\[
(n-k)S_{k,n-1,i} = (n-i)S_{k,n,i} + iS_{k,n,i+1}
\]

\[
= (n-i)(-1)^{i-1} \left(\binom{k-1}{i-1} + (-1)^n \binom{k-1}{n-i} \right) \xi(k)
\]

\[
+ i(-1)^i \left(\binom{k-1}{i} + (-1)^n \binom{k-1}{n-i-1} \right) \xi(k)
\]

\[
= (-1)^{i-1} \binom{k-1}{i-1} + (k-n+i)(-1)^n \binom{k-1}{n-i-1} \xi(k)
\]

\[
+ (-1)^i \binom{k-1}{i-1} + i(-1)^n \binom{k-1}{n-i-1} \xi(k)
\]

\[
= (n-k)(-1)^{i-1} \binom{k-1}{i-1} + (-1)^n \binom{k-1}{n-i-1} \xi(k).
\]

Thus, the identity holds for \(n - 1 \).

Remark. We mention an analogy of Theorem 1.2 on FRMZSVs. For positive integers \(k_1, k_2, \ldots, k_n \), let us define \(\xi^{\circ,\ast}_F \) by

\[
\xi^{\circ,\ast}_F(k_1, k_2, \ldots, k_n) := \sum_{\circ \text{ is either a comma "," or a plus "+"}} \xi_F(k_1 \circ k_2 \circ \cdots \circ k_n).
\]
Set \(S_{k,n,i}^{*} := \sum_{k_1 + \ldots + k_n = k} \sum_{k_i \geq 2} \zeta_{k_1,k_2,\ldots,k_n}^{*,*}(k_1,k_2,\ldots,k_n). \) Since these \(\zeta_{k_1,k_2,\ldots,k_n}^{*,*}(k_1,k_2,\ldots,k_n) \) satisfy the same harmonic product rule as \(\zeta^{*}(k_1,k_2,\ldots,k_n) \), \(S_{k,n,i}^{*} \) enjoy the same recursion relation as \([11, Proposition 2.2]\), that is, \((n-i)S_{k,n,i}^{*} + iS_{k,n,i+1}^{*} - (k-n)S_{k,n-1,i}^{*} = 0.\)

Writing \(k_i \sqcup k_j \) for juxtaposition of index sets \(k_i \) and \(k_j \), we see from \([5, Theorem 3.1]\) that

\[
\zeta_{k_1,k_2,\ldots,k_n}^{*,*}(k_1,k_2,\ldots,k_n) = (-1)^n \sum_{k_1 \sqcup \ldots \sqcup k_n = (k_1,k_2,\ldots,k_n)} (-1)^i \zeta_{i}^{*}(k_1) \cdots \zeta_{i}^{*}(k_i).
\]

Consider the case \((k_1,k_2,\ldots,k_n) = (1,\ldots,1,2,1,\ldots,1)\) in this equality. Since \(\zeta_{k_1,k_2,\ldots,k_n}^{*}(1,\ldots,1,1) \equiv \zeta_{k_1,k_2,\ldots,k_n}^{*}(1,\ldots,1,0) \pmod{\zeta(2)} \), the right-hand side is equal modulo \(\zeta(2) \) to \(\zeta_{k_1,k_2,\ldots,k_n}^{*}(1,\ldots,1,2,1,\ldots,1) \). Thus, we find \(S_{k,k-1,i}^{*} \equiv S_{k,k-1,i} \equiv (-1)^{i-1} \zeta(k) \pmod{\zeta(2)} \). In a similar way as for the proof of Theorem 1.2 (i.e., by backward induction on \(n \)), we obtain

\[
\sum_{k_1 + k_2 + \ldots + k_n = k} \zeta_{k_1,k_2,\ldots,k_n}^{*,*}(k_1,k_2,\ldots,k_n)
\equiv (-1)^i(-1)^{i-1}\left((-1)^i\binom{k-1}{i} + \binom{k-1}{n-i}\right) \zeta(k) \pmod{\zeta(2)}.
\]

2.3. **Proof of Theorem 1.3**

For a given index \(k \), we call the number of its elements greater than 1 the height. With this terminology, we shall call

\[
\zeta_{k}(1,\ldots,1)^{n-1}
\]

height-one FRMZVs. In this section, we prove Theorem 1.3. To this end, we state the following key lemma.

Lemma 2.3. *For positive integers \(k \) and \(n \) with \(k \geq 2 \), we have*

\[
\zeta^{*}(1,\ldots,1,\underbrace{k}_{n-1}) = (-1)^{n-1} \zeta^{*}(1,\ldots,1,\underbrace{k}_{n-1}).
\]

Proof. We note that the MZVs \(\zeta^{*}(k_1,k_2,\ldots,k_n) \) satisfy the shuffle product rule (for a precise definition, see \([4]\)) coming from the iterated integral expressions of the MZVs: \(\zeta^{*}(k_1)\zeta^{*}(k_2) = \zeta^{*}(k_1 \sqcup k_2) \), e.g., \(\zeta^{*}(1,1,1)^{(2)} = 3\zeta^{*}(2,1,1) + 2\zeta^{*}(1,2,1) + \zeta^{*}(1,1,2) \). Here, the notation \(k_1 \sqcup k_2 \) is a \(\mathbb{Z} \)-linear combination of indices and we extend \(\zeta^{*} \) linearly. To make the notation easier, let \(\zeta^{*}(1 \oplus (k_1,k_2,\ldots,k_n)) = \zeta^{*}(k_1+1,k_2,\ldots,k_n) \) and \(\zeta^{*}(1,\ldots,1,1,m,\ldots) = \zeta^{*}(\ldots,1,m-1,\ldots). \)
By the regularization formula \([6, \text{equation (5.2)}]\), we have (extending \(1 \oplus (\cdot)\) also linearly)

\[
\zeta^{\text{III}}(1, \ldots, 1, k) \\
\quad = (-1)^{n-1} \zeta^{\text{III}}(1 \oplus ((1, \ldots, 1)_{n-1}(k-1))) \\
\quad = (-1)^{n-1} \sum_{\substack{a_1 + \cdots + a_k = n-1 \geq 0 \atop a_1, \ldots, a_k \geq 0}} \zeta(2, 1, \ldots, 1)_{a_1-1} \ldots \zeta(2, 1, \ldots, 1)_{a_k-1} \\
\quad = (-1)^{n-1} \sum_{\substack{a_1 + \cdots + a_k = n-1 \geq 0 \atop a_1, \ldots, a_k \geq 0}} (a_{k-1} + 1) \zeta(2, 1, \ldots, 1)_{a_1-1} \ldots \zeta(2, 1, \ldots, 1)_{a_k-1} \\
\quad = (-1)^{n-1} \sum_{\substack{a_1 + \cdots + a_k = n-1 \geq 0 \atop a_1, \ldots, a_k \geq 0}} (a_{k-1} + 1) \zeta(a_{k-1} + 2, a_{k-2} + 1, \ldots, a_1 + 1).
\]

For the last equality, we used the duality formula of MZVs. That the last sum equals \(\zeta^*(n, 1, \ldots, 1)\) is due to Ohno \([10, \text{Proof of Theorem 2}]\), see also \([7, \text{Section 3}]\). Thus

\[
\zeta^{\text{III}}(1, \ldots, 1, k) = (-1)^{n-1} \zeta^*(k, 1, \ldots, 1).
\]

Now, we prove Theorem 1.3. When either \(k \) or \(n = 1\), the theorem clearly holds. We consider the case when \(k, n \geq 2\). From the above Lemma 2.3, we have

\[
\zeta^{\text{II}}(k, 1, \ldots, 1) - \zeta^{\text{II}}(n, 1, \ldots, 1) \\
\quad = \zeta(k, 1, \ldots, 1)_{n-1} + (-1)^k \zeta^*(k, 1, \ldots, 1)_{n-1} - (\zeta(n, 1, \ldots, 1)_{k-1} + (-1)^n \zeta^*(n, 1, \ldots, 1)_{k-1}).
\]

Let \(\psi(X) = \Gamma'(X)/\Gamma(X)\). By using the well-known generating series

\[
1 - \sum_{k,n \geq 1} \zeta(k, 1, \ldots, 1)_{n-1} X^k Y^n = \exp \left(\sum_{n \geq 2} \zeta(n) X^n + Y^n - (X + Y)^n \right) \\
\quad = \frac{\Gamma(1 - X)\Gamma(1 - Y)}{\Gamma(1 - X - Y)}
\]

(cf. Aomoto \([1]\) and Drinfel’d \([2]\)) and \(\psi(1 - X) = -\sum_{k \geq 2} \zeta(k) X^{k-1} - \gamma\) \((\gamma\) is Euler’s constant), we have

\[
\sum_{k,n \geq 2} \left(\zeta(k, 1, \ldots, 1)_{n-1} - \zeta(n, 1, \ldots, 1)_{k-1} \right) X^k Y^{n-1} \\
\quad = \left(\frac{1}{Y} - \frac{1}{X} \right) \left(1 - \frac{\Gamma(1 - X)\Gamma(1 - Y)}{\Gamma(1 - X - Y)} \right) + \psi(1 - X) - \psi(1 - Y).
\]
On the other hand, from Kaneko and Ohno [8, Theorem 2],
\[
\sum_{k,n \geq 2} \left((-1)^k \zeta^*(k, 1, \ldots, 1) - (-1)^n \zeta^*(n, 1, \ldots, 1) \right) X^{k-1} Y^{n-1} \\
= -\psi(X) + \psi(Y) - \pi (\cot(\pi X) - \cot(\pi Y)) \frac{\Gamma(1-X) \Gamma(1-Y)}{\Gamma(1-X-Y)}.
\]
From these, and by the well-known equalities
\[
\pi \cot(\pi X) = \frac{1}{X} + \psi(1-X) - \psi(1+X),
\]
\[
\psi(X) = \psi(1+X) - \frac{1}{X},
\]
we have
\[
\sum_{k,n \geq 2} \left(\zeta^\mu_F(k, 1, \ldots, 1) - \zeta^\mu_F(n, 1, \ldots, 1) \right) X^{k-1} Y^{n-1} \\
= \left(\frac{1}{Y} - \frac{1}{X} \right) \left(1 - \frac{\Gamma(1-X) \Gamma(1-Y)}{\Gamma(1-X-Y)} \right) \psi(1-X) - \psi(1-Y) \\
- \psi(X) + \psi(Y) - \pi (\cot(\pi X) - \cot(\pi Y)) \frac{\Gamma(1-X) \Gamma(1-Y)}{\Gamma(1-X-Y)} \\
= \left(1 - \frac{\Gamma(1-X) \Gamma(1-Y)}{\Gamma(1-X-Y)} \right) \left(\psi(1-X) - \psi(1+X) - \psi(1-Y) + \psi(1+Y) \right) \\
= -2 \left(1 - \frac{\Gamma(1-X) \Gamma(1-Y)}{\Gamma(1-X-Y)} \right) \sum_{l \geq 1} \zeta(2l)(X^{2l-1} - Y^{2l-1}).
\]
Since the coefficients of $\Gamma(1-X) \Gamma(1-Y)/\Gamma(1-X-Y)$ belong to the \mathbb{Q}-algebra \mathcal{Z}, we have
\[
\zeta^\mu_F(k, 1, \ldots, 1) \equiv \zeta^\mu_F(n, 1, \ldots, 1) \pmod{\zeta(2)}.
\]
This proves Theorem 1.3.

Acknowledgement. The author would like to thank Professor Masanobu Kaneko for valuable comments and suggestions.

References

Hideki Murahara
Graduate School of Mathematics
Kyushu University
744 Motooka, Fukuoka-city
Fukuoka, 819-0395
Japan
(E-mail: h-murahara@math.kyushu-u.ac.jp)