ALGEBRAS OF HOLOMORPHIC FUNCTIONS

By

Mikio FURUSHIMA

(Received, May 8, 1981)

Introduction

Let D be an open subset of a Stein manifold X, and $\mathcal{O}(D)$ the algebra of all holomorphic functions on D. The spectrum of $\mathcal{O}(D)$, denoted by \mathcal{F}_D is the set of continuous multiplicative linear functionals on $\mathcal{O}(D)$. We can represent $\mathcal{O}(D)$ as an algebra of functions on \mathcal{F}_D by defining $\hat{f}(\zeta) = \zeta(f)$ for $f \in \mathcal{O}(D)$, $\zeta \in \mathcal{F}_D$. The set \mathcal{F}_D is endowed with weak* topology. The mapping $\mathcal{O}(D) \to \mathcal{O}(D^*)$; $f \to \hat{f}$ will be referred to as the Gelfand transformation, where $\mathcal{O}(D^*)$ is the algebra of all continuous functions on \mathcal{F}_D. For any point $x \in D$, we define a continuous multiplicative functionals on $\mathcal{O}(D)$ by $\xi_x(f) = f(x)$, then $\xi_x \in \mathcal{F}_D$, and $x \to \xi_x$ is a continuous mapping of D into \mathcal{F}_D. Now, since X is a Stein manifold, X can be imbedded to some complex number space \mathbb{C}^N, where N is a sufficiently large positive integer. Let $F: = (f_1, \ldots, f_N): X \to \mathbb{C}^N$ the imbedding, where f_j's are holomorphic functions on X $(1 \leq j \leq N)$. Let \hat{f}_j be the Gelfand transformation of f_j $(1 \leq j \leq N)$. Then $F: = (\hat{f}_1, \ldots, \hat{f}_N)$ is a mapping of \mathcal{F}_D into \mathbb{C}^N. By the theorem of Bishop [1] and Rossi [4], \mathcal{F}_D is a Stein manifold and F is a holomorphic mapping of \mathcal{F}_D into \mathbb{C}^N. We put $\sigma_D(g_1, \ldots, g_k): = \{(\lambda_1, \ldots, \lambda_k) \in \mathbb{C}^k; \text{ the ideal generated by } (\lambda_1 - g_1), \ldots, (\lambda_k - g_k) \text{ is different from } \mathcal{O}(D)\}$, where g_1, \ldots, g_k are elements of $\mathcal{O}(D)$. The set $\sigma_D(g_1, \ldots, g_k)$ is called the joint spectrum of g_1, \ldots, g_k.

In this note, we shall show the following theorem.

Theorem. Let D be an open subset of a Stein manifold X, and $\mathcal{O}(D)$ the algebra of all holomorphic functions on D. Let $F: = (f_1, \ldots, f_N): X \to \mathbb{C}^N$ be an imbedding, where N is a sufficiently large positive integer. Then the open set D is p_τ-convex in the sense of Docquier-Grauert [2], if and only if $\sigma_D(f_1, \ldots, f_N) = F(D)$.
Proof of theorem

Let g_1, \ldots, g_n be holomorphic functions on D, and $\hat{g}_1, \ldots, \hat{g}_n$ the Gelfand transformations of g_1, \ldots, g_n. The mapping $\hat{G} = (\hat{g}_1, \ldots, \hat{g}_n)$ is a holomorphic mapping of \mathcal{D} into \mathbb{C}^n. Then we have the following lemma.

Lemma. $\sigma_D(g_1, \ldots, g_n) = \hat{G}(\mathcal{D})$.

Proof. If $\lambda \in \sigma_D(g_1, \ldots, g_n)$ for $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$, then there exist holomorphic functions h_1, \ldots, h_n on D such that $1 = \sum h_j \cdot (\lambda_j - g_j)$. Since $1 = \zeta(1) = \zeta(\sum_{j=1}^n h_j \cdot (\lambda_j - g_j)) = \sum_{j=1}^n \zeta(h_j) \cdot (\lambda_j - \zeta(g_j))$ for any $\zeta \in \mathcal{D}$, $\lambda_j \neq \zeta(g_j)$ for some j $(1 \leq j \leq n)$. Thus $\lambda \in \hat{G}(\mathcal{D})$. Therefore $\sigma_D(g_1, \ldots, g_n) \subset \hat{G}(\mathcal{D})$. Conversely, if $\lambda \in \hat{G}(\mathcal{D})$, then there exist \hat{g}_j $(1 \leq j \leq n)$ such that $\lambda_j - \hat{g}_j(\zeta) \neq 0$ for any $\zeta \in \mathcal{D}$. Thus $\zeta \cdot (\lambda_j - g_j) \neq 0$ for any $\sigma \in \mathcal{D}$. Hence $(\lambda_j - g_j)^{-1} \in \mathcal{D}(D)$, namely $\lambda \in \sigma_D(g_1, \ldots, g_n)$. Therefore $\sigma_D(g_1, \ldots, g_n) = \hat{G}(\mathcal{D})$.

Proof of Theorem. We put $H_\varepsilon := \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n; |z_1| < 1 + \varepsilon, |z_j| < 1 (j = 2, \ldots, n)\} \cup \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n; 1 - \varepsilon < |z_1| < 1 + \varepsilon, |z_j| < 1 + \varepsilon (j = 2, \ldots, n)\}$, and $P_\varepsilon := \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n; |z_j| < 1 + \varepsilon (1 \leq j \leq n)\}$. If D is not p_γ-convex, then there exists a continuous mapping φ of P_ε in X such that the set $\varphi(H_\varepsilon)$ is contained in D but the set $\varphi(P_\varepsilon)$ is not contained in D. For every holomorphic function $f \in \mathcal{O}(D)$, there exists a holomorphic function h on P_ε such that $f|_{H_\varepsilon} = h|_{H_\varepsilon}$. Now, there exist a point x_0 in X, and a point z_0 in $P_\varepsilon - H_\varepsilon$ such that $x_0 = \varphi(z_0)$, $x_0 \in \varphi(P_\varepsilon)$ but $x_0 \in D$. We put $\zeta_{x_0} = \zeta(x_0)$. Then $\zeta_{x_0} \in \mathcal{D}$, because such a function h is uniquely determined. Since $\hat{F}(\mathcal{D}) = \sigma_D(f_1, \ldots, f_n)$, $F(D)$ by above lemma and the assumption, there exists a point $x \in D$ such that $f_\zeta(x_0) = \zeta_\zeta(x_0) = \zeta(f_j(x_0))$ $(1 \leq j \leq N)$. Since f_j's are holomorphic on X, $\zeta_{x_0}(f_j) = \hat{f}_\zeta(f_j(x_0))$ $(1 \leq j \leq N)$. Since the mapping $F = (f_1, \ldots, f_n)$ $X \rightarrow \mathbb{C}^N$ is an imbedding, $x_0 = x$. Thus $x_0 \in D$. This is a contradiction.

Conversely, if D is p_γ-convex, then D is a Stein open subset of X by the theorem of Docquier-Grauert [2]. We have only to show that $\hat{F}(\mathcal{D}) \subset \mathcal{F}(D)$. Now, the ideal generated by $(f_1 - \zeta(f_1)), \ldots, (f_N - \zeta(f_N))$, where $\zeta \in \mathcal{D}$, has common zero in D, because D is a Stein open set. Thus there exists a point $x \in D$ such that $f_j(x) = \zeta(f_j)$ $(1 \leq j \leq N)$. Therefore $\hat{F}(\mathcal{D}) \subset \mathcal{F}(D)$.

Remark. By the theorem of Docquier-Grauert [2], D is Stein if and only if $\mathcal{F}(D) = \sigma_D(f_1, \ldots, f_n)$. In particular, let D be an open subset of \mathbb{C}^n, and z_1, \ldots, z_n
the coordinate functions on \mathbb{C}^n. Then D is an open set of holomorphy if and only if $D = \sigma_D(z_1, \ldots, z_n)$, in fact D is homeomorphic to \mathscr{H}_D.

References

