く、かつ活発であることが観察された。次に、林内の樹上で belisama 成虫の集団が観察され、これは、前述と比し陽光が短ながらあること、吸蜜植物が特に見当たらない点で差がある。また、oraia では林内の集団は全く認められなかった。これらの習性上の差異から、両種は、斑紋は類似し一部で混飛をしているが、本来のハビタートは異なっているとも推定された。

2. ♂♀成虫の翅紋の特徴
♂♀表面は上翅黒縁、♀表面は上翅外縁斑紋などに特徴が認められた。♂表面は上翅基半部の白化。後翅の黄色部、赤紋など、♀表面は後翅の赤紋、基部を中心とした黒化などに各々の特徴が認められた。全般に両種ともパラッキが大きく、類似した個体もあった。

3. 両種の♂♀ゲニタリアの特徴
同翅類翅の各々 3 個体を用いて検討した。Ring は oraia の方が高さがあり、phallus も oraia が長いなど特徴が認められた。Juxta や uncus にも、微妙ながらも差異深い差異を観察したが、時間の関係で割愛した。

今回は、四ツ島産の両種の特徴を報告した。ゲニタリアも 3 個体つつ調査であり、まだまだ十分とは言い難い。今後もゲニタリア、斑紋、他のについて検討を重ね、両種の差異をより正確に実証し、さらには近隣の島に棲息する同グループについても検討を続けてゆく予定である。

8. コジナメジとヒメジャノメの生理的特性の違いと生活史
保坂啓介・谷 邦・伴野英雄（関東）
ヒメジャノメ Mycalesis gotama とコジナメジ M. fransicae は関東地方以西で普通に見られる多形性の種である。関東地方の平野北方では、ヒメジャノメが年 3 化、コジナメジが年 2 化の発生をする。本研究では Mycalesis 属 2 種の発育速度、休眠誘起のための臨界日長とその感受期を飼育実験により観察し、それぞれをもとに両種の周年経過の違いを引き起こしている要因について考察した。

実験個体は 1984 年に茨城県の筑波山および桜川の筑波大学周辺で採集した雄から採卵して得た。採卵および幼虫の飼育にはチダミザサを用いた。卵から成虫となるまで 16～25℃の恒温条件下で飼育することにより、各発育階段の発育所要日数を求めた。一般にヒメジャノメのほうが発育が早く、発育限界温度と有効積算温度はヒメジャノメの卵期では 11.7℃、56 日度、幼虫期は 9.9℃、422 日度、蛹期は 9.9℃、120 日度であり、コジナメジではそれぞれ 10.8℃、71 日度、7.2℃、608 日度、9.2℃、153 日度であった。

幼虫を 12～16 L の光周期で飼育し幼虫休眠の出現率を求めた。ヒメジャノメは 4 令幼虫で休眠し臨界日長 13 時間 35 分、コジナメジは 5 令幼虫で休眠し臨界日長 14 時間 7 分であった。

日長の感受期は幼虫の各令令の始姫に長日条件（16 L）から短日（12 L）へ移す操作による休眠率の変化をもとに推定した。両種とも 3 令令で短長日を経験するとすべて不休眠となり、2 令令まで短日だと 2～3 割の個体が、1 令令だけ短長日たと 7～9 割が休眠した。おそらく両種の日長の感受期は 1～3 令令にあると思われる。

両種の周年経過の推定結果は、野外での観察結果とかなり良く一致し、相対的に早い成長速度と短い臨界日長をもつヒメジャノメは関東地方で年 3 化が可能であるが、コジナメジは年 2 化にとどまることが解った。

9. キョウト類（ヤガ科ヨトウガ亜科）の単系統性についての考察
吉松 慎一（関東）
キョウト類はイネ科を食草とし、日本から約 40 種、CALORA（1996）によると世界から約 400 種が知られている。CALORA は本グループの特徴として均一な大きさ、色彩、雄雌尾腺の形態等を挙げている。しかし、どの形態も例外を含む。キョウト類に固有の形態は認められない。

本講演では、日本産および台湾産のキョウト類の研究から、老幼幼虫の mandible の形態、雄の付属腺の形態はこのグループの固有新形態と考えられたので報告をした。

BECK（1960）によれば、ヤガ科の終齢幼虫の mandible は、一般的に 6 本の鋭角を備える。日本産のキ
ヨトウ類の齢期ごとのmandibleの形態を観察したところ、どの種も1齢では6本の錐歯が認められるのに対し、老熟幼虫では切歯部は2つのくぼみを持ったなめらかな三角形になることを確認した。GODFREY（1972）は北米産ヨトウガ亜科の幼虫の研究の中で主に上記した終齢幼虫のmandibleの形態によりキヨトウ類を1群としてまとめている。

産者の調査においてもキヨトウ類老熟幼虫に現れるmandibleの形態はヨトウガ亜科以外の亜科でも観察されず、6本の錐歯を備えた状態が広範な種で認められた。こうしたmandibleの形態はヤガ科における原始的状態であると判断される。これに対しキヨトウ類のmandibleの形態は新形質状態と判断され、キヨトウ類の固有新形質と考えられる。

一方、キヨトウ類の雌のglandula sebaceaの形態を日本産38種、台湾産37種について調査したところsacの背中から1対のglandが生じるという同様な形態を有することを確認した。ヨトウガ亜科以外の亜科ではsacを有するものはその前部より1対のglandが生じており、この形質状態はヤガ科における原始的状態と思われる。キヨトウ類のglandula sebaceaの形態は新形質状態と考えられ、キヨトウ類の固有新形質と判断される。

以上の2つの固有新形質よりキヨトウ類は単系統群である可能性が示唆される。

10. ヤマキマダラヒカゲの幼虫に見られる地理的変異

ヤマキマダラヒカゲには3亜種があり、主として成虫の大きさ、翅形、斑紋などのほか、食草や周年連等にも一定の地理的変異がみとめられるが、幼虫期の形態・斑紋などに関する変異はほとんど知られていない。ここでは、幼虫などに関するいくつかの形質に見られる変異について報告する。

①卵の直径：房総（千葉県）産のものは1.32 mm程度で1.36 - 1.37 mmの原形亜種のものよりも小型であるが、1.24 mmのサトキマダラヒカゲよりも大型。

②1齢幼虫頭殻の幅：屋久島（鹿児島県）産の0.93 mm、房総産0.98 mm、原形亜種の0.98 - 1.08 mmとなり、成虫の大きさを反映する。サトキマダラヒカゲでは0.89 mm。

③1齢幼虫頭殻の暗帯横幅：地色の深褐色から全面暗褐色（黒色）となるものまで、1から5までの5段階に分け、産地別に調べてみると、産地によって暗帯横幅の発達程度に差が見られる、同じ静岡県でも、伊豆半島のものは暗帯横幅が発達し、天城山のものには全面暗化（段階5）のもの多く見られた。房総のものでは段階2 - 3のものが多く、いわゆる「安ずみ型」となる。また、卵群によっては、1から3までの段階のものを含むことがあるので、この形質は、直接的な環境によるものではなく、遺伝的なものと考えられる。

④2 - 4齢幼虫の背線：房総産のものには、背線上を細走する暗帯が各節末端部で膨大し、「串だんご」のような形となる個体が多い、この形質も遺伝によるものとみられ、房総産のきわだた特徴といえよう。

以上の形質のほかに、蛹の翅柄の暗帯の発達程度などにも地域による変異があるようだが、適当な方法によって表示する必要があると思う。

11. 風穴に生き残ったフタスジチョウについて

フタスジチョウ（Neptis rufilis）は中部地方及び北海道の広範囲に連続的に分布し、関東地方から関西地方にかけては離散的に分布している。

産者の調査では、既知産地である日光駒ヶ岳、長野・越後地方でのがれた位置の新産地と推定されるも、本種の新しい生息地を発見した。

風穴地一帯はウシノミモドキが生産しており、産者は、その樹上で本種の全生育段階を確認したとしたがって、ウシノミモドキが中流域と同様に、この新産地においても本種の食草植物であることが明らかになった。