Photochemical Synthesis of Ultrafine Particles under Two-photon Excitation of Some Gaseous Molecules

Hiroshi MORITA
Department of Information and Image Sciences, Faculty of Engineering, Chiba University.
Yayoicho 1-33, Inage-ku, Chiba 263-8522
(Received August 26, 2002)

A new photochemical method to synthesize ultrafine particles from gaseous molecules is presented. The method was applied to gaseous mixtures of acrolein and some organosilicon compounds. From the chemical analysis of deposited ultrafine particles, it was found that two-photon excitation of organosilicon compounds produced novel chemical species. Surface characters of polyacrolein particles were successfully modified with gaseous cyclotetrasiloxane and with gaseous organic azide. Applicability of these particles to nanotechnology is briefly discussed.

Key Words: Aerosol particle formation, Laser photochemistry, Two-photon absorption, Surface modification, Organosilicon compounds

1. はじめに

光化学反応を利用して反応性有機分子から有機微粒子を気相中で作製することが出来る。自然界では大気中（対流層、および成層層）に多数の微粒子（エアロゾル）が浮遊しており、その内、比較的サイズの小さな（数μm以下の）粒子は気相中での光化学反応により生成していると考えられている。粒子数の分布で見ると10^11程度のエアロゾルが最多であるが、体積分布では0.3μm付近と8μm付近の粒子が多く存在し、特に、2.5μm以下の浮遊粒子は気候の変動や気温の変化をもたらす社会的課題となっている。一方、ナノメートルからマイクロメートルの大きさの粒子は工学的に重要な材料であり、サイズを編めて基板上に並べたり、立体的に集積したりするとナノ粒子製造用エージェントとして新規な微細加工や画像形成ができる。また、高密度記録メディアや機能素子の開発、および、ナノテクノロジーの製造に利用できる。

一般的に、気相中の粒子（エアロゾル）は①粒子核の形成、②粒子核と気相分子との反応による粒子核の成長（0.1μm程度まで）、③粒子核の衝突による成長を経て数μmの大きさの粒子まで成長する。ここで粒子核の形成とその成長過程に光化学反応を利用すると、レーザー光の入射を利用して気相分子を励起状態やイオン化状態に励起できため種々の励起状態から様々な化学反応が開始できる。さらに、粒子核の特異的な反応性を利用して新規な化学反応を引き起こすことができる。すなわち、レーザー多光子過程を利用して気相分子から直接、微粒子を形成すると新規な化学種が微粒子中に固定でき、新規物質を合成し得ることになる。また、①粒子核の成長は光照射下で進行するので、試料内の Miscellaneous の影響が小さい場合には生成する粒子の大きさ（0.1μm程度まで）を光の照射時間で制御することができる。さらに、③気相中の有機微粒子を作製すると、微粒子をイオン化してその電流量分析装置（例えば、飛行時間型質量分析装置（Time of Flight Mass Spectrometry: TOF-MS））で選別することができる。そのため、選択した任意の大きさの粒を取出して様々な加工プロセスに直接組み入れることもできる。

一般に、気相中の粒子の検出には光散乱法と各種の質量分析法（GC-MS、TOF-MS、SIMS（Secondary Ion MS）、ICPMS（Inductively coupled Plasma MS）、など）が用いられ、生成物の化学組成や化学構造の同定にはフーリエ変換赤外分光法（FT-IR）やレーザーラマン法、X線電子分光法（XPS）などが用いられている。
2. 気相微粒子形成反応の歴史的背景と研究の経緯

気相分子に光照射すると気相中で物質が生成すること
は古くから知られていたが、特にアクリロイド(Acrolein)
やメタクリル酸メチル(Methyl methacrylate)の反応性
分子に紫外光を照射すると直ちに化学反応(重合反応)が進
行し "Laser snow" と呼ばれるスモッグ状の物質が生成す
る。これらの生成物は化学物質としてはそれほど重要と
は考えられておらず、むしろこのような光学的特性
を気相-固相表面化学反応へ応用し工学的に利用すること
が重要と考えられ、例えば、これらの気体蒸留管下で基
板上を特定部位に光照射してその部位をポリマー化して
修飾したり、金属基板上を光で描画しその間に沿ってポリ
マーを生成させ固定化する研究が行われてきた(6)。一方、光照射により微粒子が気相中で形成されることがCS/
H₂/He混合気体(7)、NO₂/SO₂混合気体(8)、二硫化炭素
(Carbon disulfide, CS₂)(9-12)とカルボニルスルフィド
(Carbonyl sulfide, COS)(12)で観測された。特にCS₂分子は水
銀灯の313 nm光のみならず、紫外パルスレーザー光(酸素
ガスレーザー光337 nm)なども照射しても微粒子を作
製できるため、生成した微粒子によるモニターチックの破壊
強度を測定して微粒子生成速度の試料圧依存性や励起波
長依存性、微粒子の対流や粒子成長に伴う局所的濃度変
化に関する検討が詳細に行われた。その結果、308〜340
nmのレーザー光を照射した場合の微粒子生成の化学反応
過程は式(1)〜(3)に従いCSポリマーが生成すると予測され
た(10-12)。

\[\text{CS}_2 + h\nu \rightarrow \text{CS}_2^* \]
(1)

\[\text{CS}_2^* + \text{CS}_2 \rightarrow 2\text{CS} + \text{S}_2 \]
(2)

\[n(\text{CS}) \rightarrow (\text{CS}) \]
(3)

また、COS分子では210 nmより短波長の光でのみ解離反応が起きることから、308 nmのXeCl励起レーザー光
照射では一等光吸収にCOS分子が解離反応(4)(7)によりS₂がポリマー化することと予測され、二等光吸収によ
る微粒子生成の初期の観察が報告された(12)。

\[\text{COS} + 2\text{h}\nu \rightarrow \text{CO} + \text{S}_2 \]
(4)

\[\text{S}_2(\text{S'}, \text{D}, \text{or } \text{P}) + \text{COS} \rightarrow \text{S}_2 + \text{CO} \]
(5)

\[\text{S}_2 + n(\text{S}_2) \rightarrow \text{S}_{2n} \]
(6)

\[\text{S} + \text{S}_2 \rightarrow \text{S}_3 \]
(7)

C/S₂ポリマーの化学構造に関しては、1941年に
Bridgman(13)が高圧(40 kbar)下、150 ℃で液の二硫化炭素
が黒色の固体に変化することを見発見して以来、現在まで
多数の研究者の興味を示している。CS₂気体に313 nm光を
照射するとCS₂の分子が吸収されるが、その化学
構造として二つの構造(Fig. 1(a-1)と(a-2))が提案されてい
る(14,15)。一方、CS₂液体に300〜400 nm光を照射した場合
にはCS₂の化学構造を持つ薄膜が形成され、その化学構
造がFig. 1(b)と提案されているが(15)。他方、CS₂液体に250
〜450 nm光を照射すると(CS₂)と(CS₂)の混合物(Fig. 1
(c))が検出され(10)と報告されている。

一方、粒子核の生成機構が熱拡散型霧箱(Thermal diffusion
cloud chamber)を利用して研究されている(15)。CS₂を
含んだ過飽和蒸気の条件下では、280〜390 nm光の照射で多
量の粒子核が形成されるが、それは光励起されたCS₂分子
同士が安定な凝集(クラスター形成)をとおりそれが粒子
核とされる可能性(15)や微粒子が粒子核として効率的に働
いている可能性(16)が指摘されている。一般的に粒子核形成
の反応中間体の同定が困難なうえ、CS₂分子では複合物
の化学構造が実験条件により異なり、粒子核形成反応
と粒子核成長反応を同時に、また統一的に理解するに
至っていない。

アクリロイド(Acrolein)(AC)に関しては水銀灯の光照
射で200 TorrのAC気体からエテルの粉末が気体中付
り取り出される。Ni基板上では気相中で作られた粒子核が基板上
で粒子成長する(15)。これらACの重合物、いわち、ポリ
アクリロイド(PolyAC)の化学構造はFig. 1(d)に示すよう
に、環状アセタール構造とヘミアセタール構造を含んだ
構造が構成され(17)と報告されている。また、AC液体にγ線を照
射し重合反応を開始すると0.5〜4 μmのポリマー微粒子が
形成でき、AC溶液中で微粒化できることが報告され
ている(21,22)。

Fig. 1 Proposed chemical structures of polymers synthetiszed from CS₂ and AC. (a) (CS₂)₂ particles,(14,15) (b) (CS₂) film,(15) (c) (CS₂₂) + (CS₂)₂ film,(16) and (d) PolyAC particles.(20)

レーザー研究 2003年2月
3. レーザー光を利用した気相微粒子形成反応

AC気体に窒素ガスレーザー光（337.1 nm）を照射した結果、気相中で微粒子が形成できた。AC種気体と、各種ケイ素化合物との混合気体から複合微粒子を作製した我々の最近の結果にいて報告し、その特徴を考察する。

3.1 アクリロニトリル微粒子

AC気体に窒素ガスレーザー光を照射すると気相中で微粒子が形成でき、それは気体試料をモニターガス（He-Neレーザー光（633 nm））を照射しておくと生成した微粒子によりモニターガスが散乱されるため検出できる。光照射で生成した微粒子はセールで対流流動しセールの底部に集い

た（ガラスや銅の基板上で沈降する）。沈降した粒子は白色で球形をしており、0.1 – 2.0 μm（平均粒径が0.77 μm）の大きさであった。ACは280 – 380 nm領域にn=3吸収帯をもつが、313 nmより短波長光ではCOとCHを解消する Speciesで減少することを、313 nmでの重合反応の重量収率は6.2×10⁻³と見積もられているがこれらのラジカルは強化重合反応が開始される。これについて、窒素ガスレーザー光の波長では、一酸化炭素、COから重合されるラジカルを生成することはできず、二酸化炭素が必要である。事実、生成した微粒子をモニターガス（He-Neレーザー光）の散乱強度を測定すると、Fig.2に示すように散布強度（この場合には粒子数に対応）が増加する。この結果は、微粒子のPTIRスペクトルを測定した結果を参照して考えると、沈降した微粒子のPTIRスペクトルを測定した結果、既報のポリマー洗浄が不十分であるとのペアリングの化学構造はFig.1（a）に示す環状アセテール構造とヘキサセタール構造を含むことが考えられる。

AC気体から微粒子を形成した時の重合度を計算してみると、ポリアクリロニトリルの比率を1.2と仮定すると、10 nmの粒子中にはACのモノマー単位が約6000個、また、0.1 μm

の粒子中には約600万個含まれている。AC分子が溶液中の反応のように1.2-重合や1.4-重合で球状に重合した場合には粒子とはならず、Fig.1の構造のように二次元的な広がりをもって重合していくことが粒子形成に必要と思われ

3.2 有機ケイ素化合物とアクリロニトリル複合微粒子

光化学反応を利用して微粒子を作製する一つの簡単な方法は、微粒子中の成分として取り入れたい反応性分子とAC（又は、CS₂）との混合気体を照射し、それに光照射してポリアクリロニトリル（polyacrylonitrile）を生成する。この方法で得られる有機ケイ素化合物とACとの混合気体から複合微粒子を作製した。その内、ナトリウムアルミナニトリル（NaAl₃（CH₁₇）₃）（ATMSi）とACとの混合気体から微粒子を作製した場合について説明する。Fig.3およびFig.4の模擬試験においてACとN₂ガスの混合気体を照射した結果、白色の微粒子が沈降し、その溶液を図1（d）に示す環状アセテール構造を含むことが考えられる。Fig.4に示すように有機ガスレーザー光の強度を測定すると、その強度は急激に大きくなり、また、散乱光を観測し始めるまでの誘導時間は短くなった。さらに、ATMSiの
分圧を増やして一定強度の窒素ガスレーザー光を照射した場合にも、Fig. 4に示すように散乱光強度が高まり、また、誘導時間も短くなった。一方、水銀灯の313 nm光をATMSei/AC混合気体試料に照射した場合には微粒子(平均径: 0.78 μm)が形成され、微粒子によるモニター光の散乱が観測できたが、その場合には散乱光強度は急激に強くはならず励起光強度に比例して増加しただけである。この違いはATMSei分子が200 nmよりも短波長帯でのみ吸収帯をもつため、水銀灯の313 nm光励起の場合にはACのみがガス分子光励起される重合反応。即ち、微粒子形成反応を進行するのに対し、(8)、窒素ガスレーザー光を照射した場合には、窒素ガスレーザー光の二光子光照射においてもしくはなくATMSei分子も同時に光励起され粒子核形成反応を促進しているためである。

水銀灯(313 nm光)の一光子過程

$$\text{CH}_2 = \text{CH} - \text{CH} = \text{O} \rightarrow \text{C}_2\text{H}_4 \ast + \ast \text{CHO}$$ (8)

窒素ガスレーザー光の一光子過程

$$\text{CH}_3 = \text{CH} - \text{CH}_2 \rightarrow \text{CH}_2 = \text{CH} - \text{CH}_2 \ast \ast + \ast \text{Si} \text{(CH}_3 \text{)}_2$$ (9)

$$\text{CH}_3 = \text{CH} - \text{CH} = \text{O} \rightarrow \text{C}_2\text{H}_4 \ast + \ast \text{CHO}$$ (10)

Fig. 5に示した微粒子をKBr製剤にして測定したFT-IRスペクトルを示す。水銀灯の313 nm光励起の場合にはポリアクリロニトリルに帰属できるバンドの他、1243, 839, 765 cm$^{-1}$にトリメチルシル基に帰属できる吸収帯が観測できた。ATMSei分子光を観測されておらず、また、分解をもっていないので、ATMSei分子はアルカリのC=Si二重結合の重合反応によりポリアクリロニトリル微粒子が成長してい

Fig. 4 He-Ne laser light intensity scattered by the aerosol particles produced from a gaseous mixture of ATMSei and AC (41 Torr) under irradiation with N$_2$ laser light at an energy of 1.8 mJ/pulse with a repetition rate of 12 Hz. The partial pressure of ATMSei was (a) 40, (b) 25, (c) 12, and (d) 0 Torr.

ル基とポリアクリロニトリルに帰属できる吸収帯の強度が弱くなった。1130 cm$^{-1}$と1410 cm$^{-1}$の吸収帯はトリメチルシラン環に帰属できる。したがって、トリメチルシラン環の生成は次のような反応による。

$$\text{CH}_3 = \text{CH} - \text{CH} = \text{O} \rightarrow \text{C}_2\text{H}_4 \ast + \ast \text{CHO}$$

$$\rightarrow \text{CH}_3 = \text{CH} - \text{CH}_2 \ast + \ast \text{Si} \text{(CH}_3 \text{)}_2$$

$$\rightarrow \text{CH}_3 = \text{CH} - \text{CH} = \text{O} \rightarrow \text{C}_2\text{H}_4 \ast + \ast \text{CHO}$$

(11)

(12)

式(11)で生成したCH$_3$ Si(CH$_3$)$_2$がACのC=Si二重結合と反応し、シランシクロペンタジエンを生成する。このように、窒素ガスレーザー光の二光子励起を利用してACにATMSei分子が同時に光励起され、一光子励起では観測されていない新規の化学種(この場合には、シランシクロペンタジエン)が微粒子中に固定できる。

Fig. 5 FT-IR spectra of sedimentary aerosol particles produced from (a) pure gaseous AC (41 Torr), (b) a gaseous mixture of ATMSei (12 Torr) and AC (41 Torr) under irradiation with a medium pressure mercury lamp, and (c) a gaseous mixture of ATMSei (12 Torr) and AC (41 Torr) under irradiation with N$_2$ laser light.
4. ポリアクリレイン粒子の表面修飾反応

粒子表面の光化学反応を利用すると表面層として別の化学構造をもった複合粒子を作製することが可能である。そのような試みとして、先ず、ポリアクリレイン気相に塩素ガスレーザー光（または、水銀灯の313nm光）を照射してポリアクリレイン（PolyAC）粒子を作製し、その後、粒子を沈殿させる照射セル中に反応性気体（塩素シクロキサン化合物やアジャ化合物）を導入してPolyAC粒子表面での光化学反応を誘起して表面修飾したPolyAC粒子を作製した。

先ず、塩素シクロキサン化合物の一つであるTetramethylcyclooctasiloxane（TTS）は化学蒸着法（CVD）でSiO₂やTiO₂粒子上にPMSの薄膜を生成し29,30。また、オゾンとのCVDでSiO₂を生成することが報告されている。さらに、TTSとTiO₂粒子の懸濁液中で300nmより長波長域の光を照射するとTiO₂が光励起されTTS分子を分解しポリアクリレイン（PMS）を生成することも報告されている31。TTS気相は230nmより短波長域に強い吸収帯をもつが、230～270nm領域にも微弱な吸収帯がある。これにより、253.7nmの光の照射でTTS気体とPMS薄膜が作製できた。塩素ガスレーザー光の照射ではTTSの二光子吸収を利用してPMSの微粒子が作製できた30。このように、TTS気体自体が光反応性を示すため、PolyAC粒子表面での光化学修飾反応を開始する可能性がある。そこでPolyAC粒子が沈殿している照射セルにTSS蒸気（1～3Tor）を導入し、PolyAC粒子表面を光照射して後皮の粒子のFT-IRスペクトルを測定した32。その結果、水銀灯の313nmと275nmの光の照射ではPolyAC粒子表面での反応は起こっておらず、253.7nmの照射で初めてPMSが検出できた。これはPolyAC粒子の光励起よりもTTS気体の光励起の方が光化学修飾反応として有効であることを示している。塩素ガスレーザー光を照射した場合には二光子過程によりTTS分子をより効率的に励起できるため、PolyAC粒子の化学修飾反応も速く進行した。しかし、SEM観察から、修飾されたPolyAC粒子の他、より小さなPMS粒子の生成も観測されたため、粒子表面反応だけを分離することが難しい。

これに、アジュ化合物としてTrimethylsiloxoazide（TMSaZ）を利用した。TMSaZ蒸気は光化学反応性を高く、AC粒子と混合しておけばあくまでHexamethyldisiloxaneを生成する33。このTMSaZの化学反応性を利用し、PolyAC粒子表面の改修反応を行った。5TorのTMSaZ蒸気の雰囲気下、313nm光を3時間照射し-FT-IRスペクトルを測定した結果、2105, 1254, 854cm⁻¹にTMSaZ由来のバンドが観測され、PolyAC粒子が化学修飾されていることが確認できた。

以上の二例のように、気相中の化学反応で形成された粒子はさらにその表面を他の化合物で化学修飾することができる。これは工業的に有用な複合粒子を設計する際、重要な技術となる。

5. 将来展望

気相分子の光化学反応を利用してナノメートルからマイクロメートルの大きさの粒子を気相中で作製する実験法について説明し、粒子の化学組成の複合化、粒子の表面修飾反応について幾つかの実験例を所引に説明し、気相分子の二光子励起の重要性を指摘した。この微粒子作製技術をさらに応用するためには紫外光だけでなく可視光でも複合微粒子が作製できることが望ましい。

実際、グリオキサール（Glyoxal）分子は可視光（水銀灯の435.8nm光）で化学反応を開封しこれがACやCS₂の二蔵反応を誘起することを見出したが34。可視光照射で直接微粒子を形成する化学反応の探索も望まれる。また、金属クラスターと金属ナノ粒子を含む有機超微粒子や有機ナノ粒子が作製できれば高密度電子記録材料の開発やフォトニック結晶の作製に発展させることができる。有機ゲルマニウム化合物やシリコンカーボン化合物とCS₂の混合気体から金属を含む微粒子が作製できるが、このような研究をさらに発展させるためには金属クラスターの分散状態や金属ナノ粒子のサイズが制御できることが重要となる。

本稿で説明した光化学反応を利用して作製した粒子は光化学反応性を潜在的に保持しており、基板と粒子間、又は、粒子同士を局所的な光照射で互いに結びついたり固定することができる。このような特性を持つナノ粒子を集積して機能素子を作製するためには、今後の技術の開発（又は、均一化）と共に、粒子の化学組成や化学構造をより精密に制御する必要がある。

最後に、グリオキサールやCS₂を利用した微粒子形成反応が表面絵画を増加する変化を生じ、発見した35。これにより微粒子形成反応が可視光条件のみならず外臓場でも制御できることを示しており、今後の磁場効果を積極的に解明していく必要がある。
参考文献

レーザー粒子生成 (aerosol particle formation)

気体中に分散する固体の粒子(霧)や凝集した液体(霧)をエアロゾルと呼ぶ。気体中に分散した粒子は活発なブラウン運動により凝集しやすく時間と共に重力により沈降する。大気中のエアロゾルの濃度は地上付近が最大で、上空ほど低くなるが、成層圏で高度16～50kmの中の高度20km付近でエアロゾル濃度が高いと考えられる。これをユンゲ層 (Yunage layer) と呼ぶ。成層圏のエアロゾル粒子は硫酸塩、硝酸塩、アンモニウム塩などで、これらの火山噴火による二酸化硫黄 (SO2) や硫化水素 (H2S)、海洋から供給される生物起源の硫化カルボニル (COS) や熱帯生活から発生するフロンなどの塩素やフッ素を含む化学物質やオゾンなどから大気の紫外線を利用して光化的に合成されている。

(森田 浩)