北海道恵庭市に帰化したアライグマ（*Procyon lotor*）の
行動圏とその空間配置

倉島 治1, 庭瀬奈穂美2

1 北海道大学文学部行動科学研究科社会生態学講座
（現：東京大学大学院総合文化研究科都市科学専攻生命環境科学系）
2 北海道大学文学部行動科学研究科社会生態学講座（現：南富良野町立金山中学校）

摘 要

本研究では、1993年9月から1994年10月にかけて、北海道恵庭市において帰化しているアライグマ（*Procyon lotor*）を調査した。ラジオ・テレメトリー法により、オス4頭とメス7頭の日中のレステイティングサイトの位置を定位し、行動圏の大きさとその空間配置を明らかにした。行動圏の空間配置は、オス間では排他的で、メス間では重複していた。単独オスの行動圏は複数のメスの行動圏と重複していた。行動圏内の空間利用様式からみると、行動圏を重複させている2個体の組み合わせの多くから排他的な関係が示された。しかし、異性間における単独オスと複数メスの組み合わせには親和的関係がみられた。恵庭市において確認された行動圏の空間配置および個体間の相互関係は、これまでに原産地で報告されている結果と大きく異なる点はなかった。このことから、恵庭市のアライグマの行動には、新たな環境への移入に伴う大きな变化はないと推測された。

はじめに

アライグマは北米を原産とする食肉目アライグマ科の動物である。日本へは1970年代から主にペットとして輸入され、岐阜県可児市などで、飼育下から逃亡した個体の自然繁殖が確認されている（村瀬, 1989）。新たな環境へ移入された動物は、以下のような問題を引き起こす危険がある。（1）外来生態系のバランスを崩す。（2）新たな寄生虫や病気などをもたらす。（3）農業被害をもたらす。アライグマの場合でもこのような問題が生じる可能性がある。北海道札幌市から南東約30kmに位置する恵庭市ではペットとして導入されたアライグマが1979年頃に逃亡し、その5年後頃から、人目につくようになったといわれている（阿部, 1994）。近年、目撃数が増加していることから（村山, 1990），この地域での個体数は増加傾向にあると考えられる。本研究では恵庭市に生息しているアライグマの個体群について、現在の生息状況を把握し、今後の動向を探るために、ラジオ・テレメトリー法による個体の休息場の定位調査をおこない、（1）繁殖、（2）夏期と冬期における個体の行動圏とその空間配置、（3）個体間における行動圏内での空間利用、および個体間距離からの相互関係の3つの点から原産地と比較した。そのうえで、帰化動物としてのアライグマ管
理について若干の考察を試みた。

調査地

調査地は、恵庭市の漁川周辺（約 55.6 km² の範囲）であり、市街地より西へ 2〜15 km に位置する（図1）。漁川上流域は、コナラ・ミズナラ・カシワの自然林、及びカラマツ・トドマツの人工林、自衛隊の演習場、ゴルフ場等がひろがる。漁川下流域は牧場（まきば）と呼ばれる地区（恵庭市牧場）となっており、主に畜産業が営まれ、飼料畑や牧場などがひろがる。また、畜舎などの人工物も比較的多く存在する。これら 2 地区は環境が大きく異なるため、漁川上流域と牧場地区とに分けて分析をおこなった。

調査方法

1. 捕獲
1993年9月7日〜12月29日の期間、漁川上流域の10地点と牧場地区の6地点において、捕獲
をおこなった。
捕獲には、箱わな（高さ 30 cm×幅 26 cm×奥行き 80 cm、AN EKCO GROUP, INC. 製）を使用し、内部にエサとして、コーン果子、魚肉ソーセージ、ニジマスなどを置いた。捕獲個体には吹き矢式注射器による麻酔の後、各種計測をこなした。成糸には、首輪型発信機（LOTEK ENGINEERING, INC. 製、もしくは ADVANCED TELEMETRY SYSTEMS, INC. 製）を装着した。予備観察では、1 歳以上でかつ繁殖の確認された最小個体の体重は 4.6 kg であり、この体重を成糸の判断基準とした。

2. 定位・観察
1993 年 9 月から 1994 年 10 月までの 415 日間、発信機装着個体を 1 日 1 回、09：30 から 15：00 までの間に定位した。定位は、指向性八木アンテナを使用して、三地点からおこなった。アライグマは夜行性であり、日中のこの時間帯には移動しない（Mech et al., 1966）ことから、定位した位置はアライグマの休息場であり、本論文ではレスティングサイトと呼ぶ。また、メスのレスティングサイトの移動が、冬以外の季節に、少なくなった場合、その原因は出産準備や仔育ての可能性がある（Schneider et al., 1971）ため、レスティングサイトを直接観察し、出産の有無を確認した。

3. 資料分析
レスティングサイトは、調査地内に 100 m 単位で設定したグリッドに従って地図上にプロットし、各個体の行動経路を最外郭法により描いた。同一グリッド内にあるレスティングサイトは、すべてそのグリッドの中心に位置するものとして分析した。これまでの予備観察から、レスティングサイトの空間分布はアライグマの行動経路を示すのに十分だと判断した。
行動経路はまず月毎に描き、その面積の季節変動を Friedman の検定により検討した。原産地北米のアライグマは冬に半冬眠状態となり、活動が著しく低下することが報告されている。この半冬眠の期間は 12 月から交尾が開始される春までとされている（Whitney, 1931; Hamilton, 1936; Mech and Turkowski, 1966）。北海道とほぼ同緯度の地域（ニューヨーク州、ニューハンプシャー州、ミシガン州）では、一般にアライグマの交尾のピークは 1 ～ 3 月にある（Whitney, 1931; Hamilton, 1936; Stueweer, 1943a, b）。このことから、行動経路面積に有意な季節変動があった場合、1 ～ 6 月を活動の低下する冬期（12 月～3 月）と活動的な夏期（4 月～11 月）とに分けて、データをプールし、分析を進めた（有意な変動がなかった場合は調査期間全体でデータをプールして分析した）。
行動経路を重複させている個体を対象として、(1) 行動経路の重複率による相互関係の評価、(2) 空間利用一致の指数からみた相互関係（Static interaction）の評価、(3) 個体間距離からみた相互関係（Dynamic interaction）の評価をおこなった（Doncaster, 1990; Todd, 1992）。
(2) の空間利用一致の指数は、行動経路を重複させている 2 個体の空間利用がどの程度一致するかを Spearman の順位相関係数で表したものである（Doncaster, 1990）。各個体の空間利用はグリッドの利用頻度分布により表し、なめらかな分布を得るために、あるグリッドを 1 度利用する度に、隣接する 8 つあるグリッドそれぞれ 1/8 の利用頻度を重みづけをおこなった。各個体が相手個体と重複したグリッドを高頻度利用しているときは正の相関が得られ、個体間に「利用空間の親和関係」があると考えられる。逆に、各個体が重複していないグリッドを高頻度利用してい
るときは負の相関が得られ、個体間に「利用空間の排他関係」があると考えられる。各個体が行動圏内をランダムに利用しているときは、相関は得られず、親和・排他のどちらの関係も存在しないといえる。

(3)の個体間距離による評価は、相互関係の指標となる個体間の距離（臨界距離：critical distance）を設定し、2個体が互いの個体間距離を臨界距離以内に、または臨界距離よりも大きく維持しているのか、あるいはそのような関係をもたないのかをみる（Doncaster, 1990）。本論文では行動圏を重複させている2個体の同一日のレスティングサイトn組から、同一時刻の個体間距離（n個）とすべての組み合わせの個体間距離（n²個）との両群における臨界距離以内のもと臨界距離よりも大きなものとの頻度間の有意差をFisherの直接法により検定し、個体間の相互関係の有無を検討した。臨界距離はレスティングサイトを100 m単位のグリッドにて表現したことから、便宜上100 mに設定した。個体の利用グリッド、およびそれと隣接する上下左右のグリッドのいずれかを相手個体が利用した場合に、2個体間の距離は100 m以内となり、隣接する右上・右下・左上・左下を相手個体が利用した場合には√2×100 mとなる。アライグマのように個体の行動圏位置が季節的に変動する動物の場合、この評価法を長期のデータに対してもちろんと時刻を無視したすべての組み合わせの個体間距離（n²個）を過大評価してしまう。このため、夏季・冬期ではなく月毎にプールしたレスティングサイトにのみ適用した。

結 果

1. 捕獲結果

延べ533回のわな設置の結果、オス11頭、メス12頭の計23頭の個体を捕獲し、そのうちの成獣オス6頭、成獣メス7頭に発信機を装着した。漁川上流域では捕獲期間後半（11月18日以降）の延べ224回のわな設置で、新たな成獣個体の捕獲はなく、再捕獲のみであった。そのため、漁川上流域の成獣個体すべてに発信機をとりつけたと判断した。発信機装着個体には捕獲順に、オスはM1、M2、…、M6、メスはF1、F2、…、F7と命名した（表1）。

M1、M2、F1、F2の4個体は牧場地区で、残りの個体は漁川上流域で捕獲された。これらの個体のうち、M3は右前肢4分の3の欠損により、移動能力が正常個体より低く、繁殖にはほぼ

<table>
<thead>
<tr>
<th>個体</th>
<th>捕獲地点</th>
<th>体長+尾長 (cm)</th>
<th>体重 (kg)</th>
<th>行動圏面積 (ha)</th>
<th>捕獲月日 (1993年)</th>
<th>調査期間 (日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M</td>
<td>63±20</td>
<td>5.3</td>
<td>38.0 152.0</td>
<td>09/12</td>
<td>408</td>
</tr>
<tr>
<td>M2</td>
<td>M</td>
<td>60±20</td>
<td>4.9</td>
<td>30.5 184.0</td>
<td>09/14</td>
<td>258</td>
</tr>
<tr>
<td>M4</td>
<td>I</td>
<td>65±00</td>
<td>8.4</td>
<td>203.5 509.5</td>
<td>10/06</td>
<td>385</td>
</tr>
<tr>
<td>M5</td>
<td>I</td>
<td>62±21</td>
<td>6.3</td>
<td>63.5 417.0</td>
<td>10/10</td>
<td>227</td>
</tr>
<tr>
<td>F1</td>
<td>M</td>
<td>57±20</td>
<td>4.9</td>
<td>32.5 100.0</td>
<td>09/12</td>
<td>407</td>
</tr>
<tr>
<td>F2</td>
<td>M</td>
<td>64±21</td>
<td>6.9</td>
<td>74.0 81.0</td>
<td>09/14</td>
<td>259</td>
</tr>
<tr>
<td>F3</td>
<td>I</td>
<td>61±21</td>
<td>5.9</td>
<td>105.5 310.5</td>
<td>09/23</td>
<td>395</td>
</tr>
<tr>
<td>F4</td>
<td>I</td>
<td>68±24</td>
<td>6.3</td>
<td>381.0 648.5</td>
<td>09/23</td>
<td>389</td>
</tr>
<tr>
<td>F5</td>
<td>I</td>
<td>55±21</td>
<td>5.7</td>
<td>195.5 70.0</td>
<td>10/06</td>
<td>167</td>
</tr>
<tr>
<td>F6</td>
<td>I</td>
<td>68±16</td>
<td>8.6</td>
<td>25.5 278.0</td>
<td>10/08</td>
<td>387</td>
</tr>
<tr>
<td>F7</td>
<td>I</td>
<td>55±21</td>
<td>6.3</td>
<td>111.0 207.0</td>
<td>10/10</td>
<td>262</td>
</tr>
</tbody>
</table>
は参加していないと判断されたため、また、M6は発信機の故障により、調査期間が活動の落ちる冬期のみの2カ月間と非常に短かく、本来の行動圏を調査することが不可能だったと判断されたため、分析から除外した。牧場地区の個体は、区域内の全個体の捕獲を確認できなかったため、レスティングサイトの分布に基づいた個体間相互関係の分析から除外した。

2．繁殖

アライグマの繁殖は以下のように確認された。
1993年9〜10月に捕獲したF4、F5、F7の3個体は、乳は出ないが、乳頭が発達していた。1993年11〜12月には、体重（1.3〜2.5kg）から当歳個体と判断される（Mech et al., 1968）オス5頭、メス5頭を捕獲した。
1994年9月27日には、F6が5頭の仔を育てているのを直接観察により確認した。F6は1994年8月10日〜10月18日の期間、同一地点をレスティングサイトとして利用していた。また、1992年6月の予備調査で仔育てを確認したF7は、1992年6月下旬まで同一地点をレスティングサイトとして利用していた。

3．行動圈面積

各個体の行動圏面積は、月毎にみると有意な季節変動がみられたため（Friedmanの検定、d.f.＝12、χ²＝41.81、p < 0.0010）、以後、行動圏を冬期（12〜3月）・夏期（4〜11月）に分けて分析した（表1、図2，3）。各個体の行動圏面積は夏期の方が冬期よりも有意に大きかった（Wilcoxonの符号順位検定、z＝－2.490、p＝0.0128）。ただ、雌雄間には、牧場地区・漁川上流域の地区別、冬期・夏期の季節別にみて、有意差がなかった（U検定、牧場地区、夏期：z＝－1.549、p＝0.1213、冬期：z＝－0.775、p＝0.4386、漁川上流域、夏期：z＝－1.162、p＝0.2453、冬期：

図2．夏期（4〜11月）における調査個体の行動圏の空間配置（M3、M6を除いた理由は本文参照）
図3. 冬期（12月～3月）における調査個体の行動圏の空間配置（M3、M6を除いた理由は本文参照）。

z=0.000, p＞0.9999）。

また、行動圏面積は個体差が大きかった。そこで、本調査地をアライグマの配置状況から（1）牧場地区、（2）漁川上流域、（3）漁川周辺以外の地区の3つに大別して検討した。牧場地区は農耕地と市街地からなり、アライグマの移入、自然繁殖が最初に頼れたとみられている地区である（村山，1990）。さらに、アライグマは牧場地区から河川沿いに分布域を広げている可能性が高い（村山，1990）。農耕地や人為的建造物の分布と量に差が存在し、生息密度は農耕地である牧場地区が一番高く、漁川上流域、漁川周辺以外の地区は低くなると考えられる。牧場地区を行動圏としていた個体はM1、M2、F1、F2の4個体、牧場地区と漁川上流域の両方を行動圏としていた個体はM5、漁川上流域の個体はM3、F3、F5、F6、F7の5個体、漁川上流域と漁川周辺以外の地区の両方に行動圏を広げていた個体はF4である。雌雄別にみてみると、行動圏面積は「牧場地区のみ」、「漁川上流域のみ」、「漁川上流域と漁川周辺以外の地区」の順で大きくなっており（図2，3），定性的ではあるが，生息密度（Sandell, 1989）や農作物・人為的建造物の分布や量の差が行動圏面積と関連していることが示唆された。

4. 行動圏の空間配置と重複率

漁川上流域では1頭のオス（M4）が複数のメス（F3、F4、F5、F6、F7）と行動圏を重複させていた（図2，3）。各個体の行動圏の位置は，夏期（図2）と冬期（図3）との間で大きな変化はみられなかった。しかし，M5のみは行動圏の位置を大きく変え，夏期には牧場地区から漁川上流域および広い地域を行動圏としていたが，冬期には牧場地区の非常に狭い範囲のみを行動圏としていた。

行動圏の重複率は同性間，異性間ともに冬期よりも夏期のほうが大きくなる傾向にあった（表2，図2，3）。オス同士では，冬期において重複がみられず，夏期では1組の個体の組み合わせ
表 2．個体間の行動圈の重複面積と重複率．
A：個体 a からみた個体 b との行動圈重複率
B：個体 b からみた個体 a との行動圈重複率

<table>
<thead>
<tr>
<th>対象個体</th>
<th>冬期（12〜3月）</th>
<th>夏期（4〜11月）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>重複面積 (ha)</td>
<td>重複割合 (%)</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>M-M</td>
<td>M4 M5</td>
<td>0.00</td>
</tr>
<tr>
<td>F-F</td>
<td>F3 F4</td>
<td>44.16</td>
</tr>
<tr>
<td></td>
<td>F5 F6</td>
<td>28.91</td>
</tr>
<tr>
<td></td>
<td>F7 F8</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F9 F10</td>
<td>8.67</td>
</tr>
<tr>
<td></td>
<td>F4 F5</td>
<td>17.75</td>
</tr>
<tr>
<td></td>
<td>F6 F7</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F8 F9</td>
<td>7.42</td>
</tr>
<tr>
<td>M-F</td>
<td>F3 F4</td>
<td>111.00</td>
</tr>
<tr>
<td></td>
<td>F5 F6</td>
<td>76.41</td>
</tr>
<tr>
<td></td>
<td>F7 F8</td>
<td>64.83</td>
</tr>
<tr>
<td></td>
<td>F9 F10</td>
<td>96.66</td>
</tr>
<tr>
<td></td>
<td>F4 F5</td>
<td>20.08</td>
</tr>
<tr>
<td></td>
<td>F6 F7</td>
<td>58.50</td>
</tr>
</tbody>
</table>

が、どちらの個体からみても行動圈のうちの3％前後を重複させていた。メス同士の重複率は、冬期では平均で約10.6％（範囲0〜76.0％）だった。夏期では平均で22.3％（範囲0〜62.6％）だった。オスとメスの重複率は、冬期において平均27.8％（範囲0〜100％）となった。夏期には重複率は平均44.6％（範囲0〜95.7％）だった。重複率をオスからみた場合とメスからみた場合とは、夏期において有意差がみられ、メスからみた場合の方がより大きく行動圈を重複させていた。冬期にもこのような傾向はみられたが、有意差はなかった(Wilcoxonの符号順位検定、夏期：z = -1.992, p = 0.0464, 冬期：z = -1.483, p = 0.1380)。

5．空間利用一致指数からみた個体間相互関係（Static interaction）の評価

1対1での個体間の空間利用一致指数では、ほとんどの個体の組み合わせにおいて親和的関係はみられなかった（図4）。冬期におけるF5-F7の組み合わせのみが高い親和的関係を示した（図4 b，矢印の点：r0 = 0.46）。

しかし、行動圈の空間配置から（図2，3），特定の2個体間のみではなく、1個体と複数個体の間において親和的関係が保たれている可能性が高いと考えられる。この点を確認するために、1対複数の個体間における相互関係も空間利用一致指数から検討した。

まず、オースメスの組み合わせとして，M4と行動圈を重複させているメス5頭とM4との空間利用一致指数をみた。メス5頭のうちの任意の数頭のレスティングサイトをブールし，M4とそのプールデータとの一致指数をすべての組み合わせについて計算した（2頭の例：M4-F3+F4，3頭の例：M4-F5+F6+F7など）。一致指数はブールしたメス個体の頭数別にプロットした（図5 a-1，b-1）。図5 a-1，b-1から，M4は3〜5頭のメスのレ
図4. a：夏期に行動圈を重複させている2個体すべての組み合わせの空間利用一致指数（rs）をオス＝オス間，メス＝メス間，オス－メス間に分けてプロットした。
b：aと同様のものを冬期についてプロットした（オス＝オス間では，行動圈が重複した個体の組み合わせは存在しなかった）。矢印がついているポイントはF5－F7の組み合わせである。

スティングサイトをプールしたものとの間に高い一致指数を示し，複数のメスに対して，親和的関係を維持していることが明らかになった。

同様に任意のメスを選択して，そのメスと行動圈を重複させている数頭（1～4頭）のメスとの組み合わせすべてについても空間利用一致指数を計算し（2頭の例：F3－(F4＋F6)，4頭の例：F4－(F3＋F5＋F6＋F7)など），全個体をプロットした（図5 a－2，b－2）。図5 a－2，b－2からは，オス＝メス間でみられたプールする個体数の増加に伴う一致指
図5. a - 1, b - 1: M4と行動圏を重複させているメス個体のうち、任意の数頭（1〜5頭）のデータをブールした上で、M4とそのブールデータとの空間利用一致指数を夏期（a - 1）と冬期（b - 1）に関してプロットした。

a - 2, b - 2: メス（F3〜F7）と行動圏を重複させているメス個体のうち、任意の数頭（1〜4頭）のデータをブールした上で、メスとそのブールデータとの空間利用一致指数を夏期（a - 2）と冬期（b - 2）に関してプロットした。

数の増加はみられなかった。

行動圏の面積・空間配置、および空間利用一致指数による評価をまとめると図6のようになる。オス〜オス間では、行動圏の空間配置、空間利用のどちらも排他的な傾向を示した。メス〜メス間では、オス〜オス間よりも行動圏の空間配置は重複的だが、空間利用としては排他的な傾向を示した。オス〜メス間では、行動圏面積に有意な差はみられなかったが、単独オスが複数のメスと行動圏を重複させていた。空間利用も、単独オスが複数のメスの利用地点の各々を高頻度に利用するため、単独オス〜複数メス間に親和的関係がみられた。
図6. 個体の空間配置の模式図
オース-オース（メス-メス）：2つの円がそれぞれオース同士（メス同士）の行動圏を、●と□はそれぞれ個体が行動圏内で高頻度に利用している場所を示す。行動圏内の色が濃いほど利用頻度が高いことを示す。この場合、行動圏の重複率は、オース同士では低く、メス同士ではオース同士よりも高い。またこの重複部分の利用頻度はどちらにおいても低い。
オース-メス：実線がオースの行動圏を、点線がメスの行動圏を示す。●はオースが高頻度に利用している場所を示し、円内の色はオースが高頻度に利用している所ほど濃くなる。この場合、オースは複数のメスに対して近接を維持し、自らの行動圏内でメスが位置する場所をよく利用している。

6. 個体間距離からみた個体間相互関係（Dynamic interaction）の評価
オース-オース間の相互関係を個体間距離から評価した場合、2個体の移動に関連性はなかった。
メス-メス間では、1994年9月に、F3－F4の個体の組み合わせが100m以内の距離を有意に保つ移動パターンを、また1994年4月に、F4－F6の個体の組み合わせが100mよりも大き
な距離を維持する移動パターンを、それぞれ示した（Fisher の直接法、$F_3 - F_4 : p = 0.0379$, $F_4 - F_6 : p = 0.0430$）。

オスペメス間では、1994 年 2 月に、M4 - F3 の個体の組み合わせが 100 m 以内の距離を有意に保つ移動パターンを示した（Fisher の直接法、$p = 0.0451$）。これは、つがい形成のためにオスペメス間での接近が生じた可能性がある。

考察

北米においてアライグマの交尾期のピークは 1 〜 3 月であり、妊娠期間は約 63 日間で、出産は 6 月上旬頃までと報告されている（Whitney, 1931; Hamilton, 1936; Stuewer, 1943a, b; Schneider et al., 1971）。生まれた仔は 11 月後半に体重が約 3.2 〜 6.7 kg に達する（Mech et al., 1968）。恵庭市に 8 〜 10 月に捕獲され、乳頭は発達しているが、乳は出ない状態にあった成獣メス 3 頭の仔は既に離乳していたと思われる。また、6 月に仔育てが確認された F7 は、遅くとも 6 月までには出産していたことになる。

北米では 1 度目の繁殖に失敗したメスには 2 度目の発情が存在する（Whitney, 1931; Stuewer, 1943a）。2 度目に発情したメスは夏期に出産をおこない、夏生まれの当歳個体は秋に体重が約 1.3 kg にしかならない（Whitney, 1931）。11 〜 12 月に捕獲され、体重が 1.3 〜 2.5 kg だった当歳個体や 9 月末に仔育てが確認された F6 の事例は、恵庭市でも、8 〜 9 月の出産があったことを示唆する。

以上から、恵庭市の繁殖時期は北米と同様であり、交尾のピークは 1 〜 3 月にかけて、それに失敗した場合の 2 度目のピークは 5 〜 6 月にあると考えられる。

行動圈面積に関しては、冬期と夏期で行動圏面積に有意差がみられた。行動圏の空間配置および重複率をみた場合、オス〜オス間の個体の組み合わせからは排他的関係が、メス〜メス間およびオスペ〜メス間の個体の組み合わせからは、オス〜オス間よりも非排他的な関係が示された。さらに、オス〜メス間では性による重複率の非対称性がみられ、1 頭のオスが複数のメスと行動圏を重複させていることが示された。こうした空間配置は年間を通して維持されていた。このため、行動圏面積の季節変化は、個体間の相互関係の変化よりも気温の低下によるアライグマの活動の低下が主な原因と考えられる。北米において、アライグマの半冬眠という現象が報告されており、冬期において気温が −4 ℃ 以下になると活動が著しく低下する（Sharp and Sharpe, 1958）。調査地の気温をみると、1 カ月間の最低気温が −4 ℃ 以下となった期間は 1993 年 11 月から 1994 年 4 月までだった。特に 1 〜 2 月の 59 日間では、1 日の平均気温が −4 ℃ 以下になる日が、全体の 2/3 以上にあたる 40 日間あった。本調査地でも、冬期（12 〜 3 月）にはアライグマの活動に大きく影響するほかの気温低下があったといえる。

さらに、行動圏の空間利用一致指数をみると、1 対 1 では多くの個体の組み合わせが排他的傾向を示した。これは、メス〜メス間やオス〜メス間ではオス〜オス間よりも行動圏の重複率が高かった結果と一貫矛盾する。ただし、F5 〜 F7 の組み合わせのみは空間利用一致指数および互いの行動圏の重複率が共に高かった。Mech and Turkowski (1966) は、アライグマの母娘が同一の場所で冬ごもりした事例を報告し、血縁個体同士の親和的関係が長期にわたって維持されることを示唆した。F5 〜 F7 の場合も同様のことが考えられる。しかし、調査中に F5 が死亡したため、この組み合わせの血縁関係について判断できるデータは得られなかった。
1対1ではなく1対複数の個体間での空間利用一致指数をみると、オスが複数のメスに対して親和的関係を保っており、オスは各メスの行動圈と重複した地点を高頻度に利用していることが明らかになった。これが、オスメス間を1対1で示した場合に行動圈の重複比率が高いにも関わらず空間利用一致指数の低い原因である。

個体間距離による評価の場合、ほとんどの個体の組み合わせから、相互関係の存在は示唆されなかった。このことから、行動圈の空間配置は、交尾期におけるオスメスの組み合わせを除いて、個体同士が直接に近い距離を維持したことの結果ではないと考えられる。

北米では、アライグマはオスが比較的大きくかつ同性に対して排他的な行動圈を維持し、その中に2頭かそれ以上の互いに重複する行動圈を持つメスを含むと報告されている（Fritzell, 1978）。これまで見てきた恵庭市のアライグマの行動圈の空間配置や行動圈面積の変化は原産地での報告とよく類似している。移入先の恵庭市においても生息空間の利用からみたアライグマの社会構造に大きな変化は生じていないと考えられる。

最後に、以上の結果を受けて、恵庭市およびその周辺におけるアライグマ管理について提言したい。すでに定着した移入動物への対策として池田（1997）は、(1)現状の把握・住民の意識調査、(2)緊急性のラック付け・管理方針の決定、(3)捕獲作業・モニタリングの3段階の手順を提言している。これに従うと、恵庭市のアライグマは現在、(2)・(3)の段階にあり、その緊急性ランクは、本研究の結果とアオサギが営巣放棄する原因となるなどの生態系华盛乱（池田透、私信）や農業被害（村山、1990）を引き起こしてみることついて、定着した移入動物の中でも特に高いと言われる。このため、対策としては積極的かつ迅速な捕獲作業が必要である。本研究で得られた知見から、効果的な捕獲方法を示すと以下のようになるだろう。まず、箱入れに対してアライグマがあまり警戒を示さないこと、使用する餌をコーンなどに限定することによって他の肉食哺乳類にかかわる危険性を除去可能なのか、また、捕獲に際して、アライグマ以外の動物を傷つけることのない選択的捕獲が実行できる。捕獲場所は、F-4のように行動圈の大きな個体でも、漁川周辺に高頻度の利用地域を持っている（図7）ことから、アライグマは飼育を頻繁に利用するとの報告（池田、1996）から、漁川周辺を中心にのおこなうことの効果的である。捕獲時期は、冬期に向け、アライグマの行動が著しく低下し、その行動圈の空間配置は漁川周辺へ集中することから、活動は低下せずに漁川周辺へ行動圈が狭まる秋季に集中しておこなうことが最適と思われる。牧場地区では、漁川上流域と比較して行動圈の空間配置は不明確でないものの、アライグマが家畜などの人工物を採餌や休息の場所として利用していることから（村山、1990）、人工物周辺での捕獲が効果的と言える。

以上の対策の他にも、モニタリングとして個体群指標となる生息数や生息密度の調査とその継続、これらにもとづく管理方針の随時見直しが必要となるだろう。

謝辞

本論文の作成にあたり、北海道大学文学部社会生態学講座の鈴木延夫助教授、池田透助手には様々な面においてご指導、ご援助いただき、北海道大学実験生物センターの上野吉一助手、同じく文学部の中田篤氏には適切なご指導、ご助言をいただきました。本調査は、恵庭市市役所、恵庭営林署、自衛隊島松演習場統制所、自衛隊南恵庭駐屯所業務隊の許可を得て実施されました。以上の方々に厚くお礼申し上げます。
図7. 全調査期間におけるF4の行動圈と内部の空間利用を示したものです。行動圈内の四角が利用した部分であり、その色が濃いほど高頻度に利用したことを示す。

引用文献

池田 透, 1996. アライグマ. (伊沢雄生・粕谷俊雄・川道武男, 編) 日本動物大百科 2 哺乳類 II pp.139-146.
平凡社, 東京.
ABSTRACT

Spacing pattern of feral raccoons (*Procyon lotor*) in Eniwa, Hokkaido.

Osamu Kurashima* and Naomi Niwase

*Department of Behavioral Science, Faculty of Letter, Hokkaido University
(Present address: Department of Cognitive and Behavioral Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-0041, Japan)

Department of Behavioral Science, Faculty of Letter, Hokkaido University
(Present address: Kanayama Junior High School, Kanayama, Minamifurano-cho, Hokkaido 079-2131, Japan)

Feral raccoons (*Procyon lotor*) were studied from September 1993 to October 1994 in Eniwa, Hokkaido. Four males and seven females were radio-tracked. The spacing patterns of their home-ranges were utilized to investigate the raccoons mating systems. Males showed exclusive home-ranges. Females showed overlapping home-ranges, but rarely used the shared areas. A male used specific areas within its home range more frequently. Each female's home-range was located in one of these areas. Males maintained proximity to some females. Previous studies of North American raccoons have reported that males have exclusive and large home ranges including some females' overlapping ranges. Our results suggest that the mating pattern of raccoons in Eniwa was similar to that in North America.

Key words: home-range, mating, raccoon, radio-track, spacing pattern.