COMMUNICATION

FABMSにおける低極性有機化合物のための
新しいマトリックス系の効果
Effect of a New Matrix System for Low-polar Organic Compounds in
Fast Atom Bombardment Mass Spectrometry

高山光男, 深井俊夫, 野村太郎
Mitsuo Takayama, Toshio Fukai, Taro Nomura

(昭和63年7月4日受理)

A new matrix system m-NBA-DTDE (1:1) for FABMS of low-polar compounds, such as cholesterol (1) and stearic acid methyl ester (2), was prepared. The system, i.e., a 1:1 mixture of m-NBA (m-nitrobenzyl alcohol) to DTDE (2,2'-dithiodiethanol or 2-hydroxyethyl disulfide), contributed to measuring the positive ion FAB mass spectra of above compounds and morusin permethyl ether (3), and it brought an effective result on the ion current lifetime and the reproducibility of their spectra. The positive ion FAB mass spectra of these low-polar compounds were compared with the corresponding positive ion EI and CI mass spectra.

本来、FABMS (fast atom bombardment mass spectrometry)やliquid SIMS (liquid secondary ion mass spectrometry)は、高分子、難揮発性有機化合物の分子量、構造の決定を目的として開発されたため、EIMS (electron ionization mass spectrometry)で測定可能な低極性有機化合物がこれらソフトイオン化法の測定対象となることはほとんどなかったといってよい。しかし、最近これらソフトイオン化法によるイオン化やフラグメントーションの機構が、従来のEIMSやCIMS (chemical ionization mass spectrometry)との比較に基づいて研究され始めている。この比較研究で最も問題となるのは、各スペクトルにおけるフラグメントイオンを対応づけるためにマトリックス由来のピークの少ないFABおよびliquid SIMS質量スペクトルを得ること、そしてそのためのマトリックスの選択であるが、低極性有機化合物に有効なマトリックス系としてはm-nitrobenzyl alcohol (m-NBA)があり、従来FABMSやliquid SIMSでは測定困難とされていたコレステロールの正イオンFABMS測定に用
いられるていると、一方、水酸基やアミノ基などのレセロールがマトリックスとして有効であることが知られているが、今回コンソメロール1とステアリン酸メチルエステル2に用いたところほとんどその有効性を示さなかった。さらに我々はn-NBA（Tokyo Kasei）をマトリックスとした1と2のFABMS測定を行なったが、単独使用ではXe照射条件下でイオン放出時間が短く、スペクトルパターンの再現性の点で問題があることが判明した。一方、Baczynskyjによって導入される、保護基を有するペプチドのスペクトル測定に用いられている10マトリックスである2-hydroxyethyl disulfide（2'-dithiodiglycol; DTDE, Aldrich chemical）を1と2に用いたFABMS測定を行なったところ、単独使用ではイオン放出時間に長所が認められるものの溶解性の点で問題があり、良好なスペクトルを与えないかった。

今回、1および2のEIMSとFABMSにおけるフラグメントイオンを比較対比させるために種々のマトリックス系を試みたところ、m-NBAとDTDEの1:1（v/v）混合液、すなわち新しいマトリックス系m-NBA-DTDE（1:1）が1および2に対しイオン放出時間とスペクトルパターンの再現性に関して著しい効果を示した。本論文では、上記化合物の他にmorusin permethyl ether3にともこのマトリックス系を適用し、さらにそれら低極性化合物の正イオンFABスペクトルを対応するEIおよびCI質量スペクトルと比較検討したので報告する。

各化合物の正イオンFAB、EIおよびCI質量スペクトルはJEOL JMS-DX303型三重錠質量分析計で測定した。FABMSにおける高速中性原子には5kVで加速されたXeガスを用いた。試料は約50μgをマイクロベット先端内部に付着させ、2μlのm-NBAを導入しドライヤー（約90℃）を用いて加熱溶解させた後、2μlのDTDEを導入し混合溶解させた。EIMSにおけるイオン化電圧は70V、イオン化ガス温度は200℃であった。CIMSにおける試薬ガスにはスピンガスを用い、真空度は1×10⁻⁵Torr、イオン化ガス温度は220℃であった。各スペクトルは数回の測定でパターンの再現性を確認し平均した。

Fig. 1に今回調製した新しいマトリックス系m-NBA-DTDE（1:1）の正イオンFAB質量スペクトルを示す。

Fig. 2にはコンセロール（1, Kishida chemical）のEI、FABおよびCI質量スペクトルを示す。FAB質量スペクトルにはマトリックス由来のピークはほとんど観測されない、分子イオン付近の情報として、m/z385とm/z2369にそれぞれ（M－H）⁺と脱水ビークと考えられる（M＋H－H₂O）⁺とが観測された。これらは対応するCI質量スペクトルに現れる。

Fig. 1 Positive ion FAB mass specrum of a new matrix system m-NBA-DTDE (1:1).

*例えば、m-NBA: glycerol (1:1), m-NBA: diethanolamine (1:1), sufolane: DTDE (1:1).
FABMSにおける低極性有機化合物のための新しいマトリックス系の効果

ペクトルと良く一致する。またFABMSにおいて
低質量領域に観測されるフラグメントイオンは、
対応するEI質量スペクトルのフラグメントイオン
に良く一致する。

Fig.3にはステアリン酸メチルエステル(2,
Sigma chemical)のEI、FABおよびCI質量スペクト
トルを示す。FAB質量スペクトルは対応するCI質
量スペクトルと同様プロトン化分子(M+H)*を
基準ピークとして与える他、マトリックス系由来
のピーク(“マークで示す)も観測されるが、各フラ
グメントイオンは対応するEI質量スペクトルの
フラグメントイオンに良く一致する。しかし、EI
質量スペクトルにおけるMcLafferty転移由来の
フラグメントイオンm/z74(100%)は、FAB-マス
スペクトルではそのイオン強度は小さく(9%),
FABMSにおけるフラグメントーション機構の特
徴を示すものと考えられる。

Fig.4にはmorusin permethyl ether(3)のEI、
FABおよびCI質量スペクトルを示す。このFAB
質量スペクトルもまた対応するCI質量スペクト
ルと同様(M+H)*を基準ピークとして与える他
フラグメントイオンが付加した(M+Na)*も観測さ
れ、各フラグメントイオンは対応するEI質量スペ
クトルにおけるフラグメントイオンに良く一致す
る。

今回新しく調製したマトリックス系、m-NBA-
DTDE(1:1)の特徴は、コレステロールなどの低
極性有機化合物の正イオンFAB質量スペクトル
の極度に再現性の良い安定な測定を可能にしてい
る点にある。これは、比較的低粘度のm-NBAと高
粘度のDTDEの混合により、このマトリックス系
がXeビームの照射条件下で適当なイオン放出時
間とスパーク率を有するようになるためと考えら
れる。新たに開発されたm-NBA-DTDE(1:1)混

Fig. 2 Positive ion EI, FAB and CI mass spectrum of cholesterol (1).
高山・深井・野村

合マトリックスの利用により、従来測定困難であった低極性有機化合物のFAB質量スペクトルを、対応するEI質量スペクトルと比較できる可能性が広がった。フラグメンテーションの規則性が確立しているEIMSとの比較研究は、FABMSやliquid SIMSの一部で測定可能な有機化合物のフラグメンテーションの解析に応用する上からも重要なことと思われる。

謝辞

最後に、マトリックス剤DTDEの使用に関し貴重な助言をいただきました名城大学薬学部鈴木真言教授に感謝いたします。

参考文献

Fig. 3 Positive ion EI, FAB and CI mass spectrum of stearic acid methyl ester (2). *Peaks originated from the matrix system.

Keywords

FABMS
Low-polar compounds
Matrix
m-Nitrobenzyl alcohol
2, 2'-Dithiodiethanol
EIMS
CIMS

Fig 4 Positive ion El, FAB and CI mass spectrum of morusin permethyl ether (3). *Peaks originated from the matrix system.