LC/API/MS による薬物の高感度定量分析法のノウハウ

Know-How of the High Sensitivity Quantitative Analysis of Drugs by LC/API/MS

戸塚善三郎*
Zenzaburo TOZUKA

(Received November 27, 1996)

LC/API/MS enables quantitative analysis of drugs with high sensitivity. In order to obtain fine mass spectra, know-how for high sensitivity analysis is required. A stable spray can produce stable ionization for LC/MS analysis. It is also necessary to purify the samples for quantitation with high sensitivity. In addition to those, adequate analytical conditions of HPLC, LC/API/MS interface, and SIM (or SRM/MS) are important for analysis. Fragmentations observed in EI, CI, FAB, and LC/ESI mass spectrometry gave us hints for the selections of mass numbers for SRM analysis. LC/MS/MS analysis of enables quantitation of pg/ml level of drugs in plasma.

1. 緒言

薬物動態研究で LC/MS を定量分析に使う時、最も興味深いのは LC/MS での定量限界である。臨床試験の血中濃度を、LC/MS で測定できる定量限界が有しているかどうかである。近年、臨床試験での投与量は、多くの薬物で数 mg/body 以下に減少し、ヒトでの血中濃度は数 ng/ml から数 pg/ml のオーダーになり、さらに高感度の定量法の確立は薬物動態研究の基本である。LC/MS も近年、大気圧イオン化 (API) 法の開発と実用化が進み、LC/ESI/MS および LC/APCI/MS によって、定量限界が数 pg/ml から数 fg/ml のオーダーになった。

薬品の開発については、前臨床から申請および市販後調査まで数十年にわたって、薬物の血中濃度測定が必要である。薬品の国際開発も活発になり、何時でも何処でも誰でも実施できる定量法でなければならない。日欧米 3 極のハーモナイゼーションの国際会議 (ICH) で、定量法についても論議され、1995年横浜での ICH で、定量法のバリデーションの基準が提示された。LC/MS の定量法も薬物動態研究の定量分析に使われるならば、この基準を遵守しなければならない。

MS による定量分析の開発を振り返ってみれば、ガスクロマトグラム (GC) からの気体を、高真空系の MS に導入する GC/MS 法では、GC/CI/MS のソフトイオン化法、SIM および SRM 法、ジェットセパレーターおよびキャビラリーカラムの開発が、高感度定量法の確立に貢献した。液体クロマトグラム (LC) からの液體を、高真空系の MS に導入する LC/MS 法では、LC/ESI/MS および LC/APCI/MS のインターフェイスの開発と実用化、SIM および SRM 法、ミクロおよびセミミクロカラムの導入

* 藤沢薬品工業(株)開発第二研究所 (☎532 大阪市淀川区加島 2-1-6)
Pharmaceutical and Pharmacokinetic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd. (1-6 Kashima 2-chome, Yodogawa-ku, Osaka 532, Japan)

—377—
によって、高感度定量法の確立が可能になった。LC/ESI/MSのインターフェイスの測定条件は、文献で詳細な記載例は少ないが、LC/APCI/MSのインターフェイスの測定条件は比較的多い。今回、1996年に蔵王で開催されたBMSコンファレンスで発表した、LC/MSの微量定量法のノウハウについて、私の実験データおよび文献データもまとめ総説として発表する。

2. 薬物のLC/MS定量法のイオン化法の選択と特徴

これまでに実用化され市販されたLC/MSのイオン化法は、LC/TSI/MS、LC/PBI/MS、LC/FAB/MS、LC/APCI/MS、LC/ESI/MSである。薬物の微量定量に使用可能なLC/MSのイオン化法は、それぞれの問題点を克服するために、新しい方法が開発され進歩してきた。その原理と問題点を記載する。LC/TSI/MSは熱的分解を伴ったこと、イオン化の安定性や再現性的問題、ノイズが大きくベースラインの変動もあり、pgオーダーの高感度のニーズを満たされなかったことから、HPLCを凌駕できなかった。溶媒が空気中でオイルにトラップされ、オイル交換が頻繁でたいへんであり、時には真空ポンプも詰付いて交換しなければならなかった。LC/PBI/MSは、脂溶性が高く中性で気化しやすい物質には高感度であり注目されたが、極性物質を含む広範囲の物質への適用性に欠け、ニーズを満たせなかった。フリットFABは、ソフトイオン化で、適用範囲も拡大でき、感度も上がりつつあったが、エチレングリコールのクラスターイオンやフリットの取り扱いの煩雑さから、定量分析の適用例は少ない。大気圧イオン化法は、LC/API/MSのインターフェイスでイオン化し、イオンと溶媒分子を差別化するため、イオンを電位差でコントロールしてMSに導入する。イオン化の方法で、LC/API/MSは、LC/ESI/MSとLC/APCI/MSに分けられる。LC/APCI/MSはネプラライザーで加熱噴霧し、コロナ放電でイオン化する。LC/ESI/MSは、LCからの溶出液を大気圧下で霧状にスプレイし、高荷電をかけイオン化する。LC/APCI/MSは、熱的安定性とイオン化の効率で、LC/ESI/MSに見劣りする場合が多くあるが、機種によっては、中性物質でLC/API/MSが優れる場合がある。イオン化のメカニズムが類似しているため、インターフェイスの交換が容易で、双方を使い分けるのが望ましい。例えばまずLC/ESI/POS/MSで測定、次にLC/ESI/NEG/MS、次にLC/APCI/POS/MS、次にLC/APCI/NEG/MSで測定する。これならイオン化に適した溶媒系を検討する。LC/ESI/MSおよびLC/API/MSのインターフェイスの開発と実用化、SIMおよびSRM法のスキャンモードの測定によって、多くの薬物で、定量限界が数pg/mlから数fg/mlのオーダーの高感度定量法の確立が可能になった（Table 1）。

LC/ESI/MSおよびLC/API/MSは、定量分析法としてコストは高価であるが、実用性、汎用性、感度、特異性、再現性的総合で判定して、他の分析を凌駕している。汎用性では、酸性、塩基性物質はもちろん中性物質でもイオン付加体に容易にできるので、広範囲の物質に適用できる。また分子量も最近では4kdまでスキャンできる。さらに多価イオンを測定すると、数百kdの物質までLC/ESI/MSで測定可能である。LC/ESI/MSは、ソフトイオン化法なので不安定な物質も測定可能である。主に科学で注目されている非共有結合付加体の研究に、LC/ESI/MSは最も適している。LC/ESI/MSは溶液のpHを変えることができ、蛋白質の一次構造（pH 3）および三次構造（pH 7）の研究も行われている。感度に関しては、LC/ESI/MS/MS法により超微量 fmolまで測定可能で、高感度で分析法である。特異性に関しては、LC/ESI/MSはLCの保持時間とMSの物質固有の分子量の両方から分析するので、特異性が高い。さらにMS/MS法でQ1で親イオンを、Q3でフラグメントイオンを選択すれば、特異性は著しく高くなる。LCで妨害ビーグで悩まされた問題が、LC/MS法にするだけで容易に解決できる。特異性が優れているため、同時に複数の物質も測定できる。薬物動態研究では、毒性や薬効を有する代謝物の同時定量が求められている。定量法の再現性は、絶対法よりI.S.法が優れて
Know-How of the High Sensitivity Quantitative Analysis of Drugs by LC/API/MS

Table 1. The High Sensitivity Quantitative Analysis of Drugs by LC/MS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Ionization</th>
<th>Mode</th>
<th>QL or DL*</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK506</td>
<td>Immuno suppressor</td>
<td>ESI</td>
<td>SIM</td>
<td>25 pg/ml</td>
<td>1</td>
</tr>
<tr>
<td>FK506</td>
<td>Immuno suppressor</td>
<td>ESI</td>
<td>SRM</td>
<td>98 fg</td>
<td>4</td>
</tr>
<tr>
<td>IRI-514</td>
<td>Peptide drug</td>
<td>ESI</td>
<td>SIM</td>
<td>1 ng/ml</td>
<td>11</td>
</tr>
<tr>
<td>SQ33,600</td>
<td>HMG-CoA R inhibitor</td>
<td>ESI</td>
<td>SIM</td>
<td>10 ng/ml</td>
<td>12</td>
</tr>
<tr>
<td>Amapcillin</td>
<td>Antibiotics</td>
<td>ESI</td>
<td>MC</td>
<td>10 ppb</td>
<td>13</td>
</tr>
<tr>
<td>Acylcarnitines</td>
<td>β-Oxidation</td>
<td>ESI</td>
<td>MC</td>
<td>100 fmol</td>
<td>14</td>
</tr>
<tr>
<td>Endorphin</td>
<td>Opioid</td>
<td>ESI</td>
<td>SIM</td>
<td>5 fmol</td>
<td>15</td>
</tr>
<tr>
<td>Gentamicin-C</td>
<td>Antibiotics</td>
<td>ESI</td>
<td>SRM</td>
<td>0.05 ppm</td>
<td>16</td>
</tr>
<tr>
<td>Xanomeline</td>
<td>MR agonist</td>
<td>ESI</td>
<td>SRM</td>
<td>75 pg/ml</td>
<td>17</td>
</tr>
<tr>
<td>Cephalixin</td>
<td>Antibiotics</td>
<td>ESI</td>
<td>MC</td>
<td>10 ppb</td>
<td>13</td>
</tr>
<tr>
<td>Palmitine</td>
<td>Alkaloids</td>
<td>ESI</td>
<td>SIM</td>
<td>1 ng/ml</td>
<td>18</td>
</tr>
<tr>
<td>FK506</td>
<td>Immuno suppressor</td>
<td>APCI</td>
<td>SIM</td>
<td>50 pg</td>
<td>4</td>
</tr>
<tr>
<td>CP-80,794</td>
<td>Renin inhibitor</td>
<td>APCI</td>
<td>SIM</td>
<td>50 pg/ml</td>
<td>19</td>
</tr>
<tr>
<td>L-365,260</td>
<td>CCK antagonist</td>
<td>APCI</td>
<td>SRM</td>
<td>500 pg/ml</td>
<td>20</td>
</tr>
<tr>
<td>L-654,066</td>
<td>5AR inhibitor</td>
<td>APCI</td>
<td>SRM</td>
<td>200 pg/ml</td>
<td>21</td>
</tr>
<tr>
<td>LSD analogs</td>
<td>Hallucinogen</td>
<td>APCI</td>
<td>SRM</td>
<td>2.5 ppm</td>
<td>22</td>
</tr>
<tr>
<td>TNP-470</td>
<td>Fumagillin</td>
<td>APCI</td>
<td>SIM</td>
<td>160 pg/ml</td>
<td>23</td>
</tr>
<tr>
<td>Abanoquin</td>
<td>α,β-Blockade</td>
<td>APCI</td>
<td>SRM</td>
<td>10 pg/ml</td>
<td>24</td>
</tr>
<tr>
<td>Clenbuterol</td>
<td>β-Agonist</td>
<td>APCI</td>
<td>SRM</td>
<td>2.5 ppb</td>
<td>25</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>HIV inhibitor</td>
<td>APCI</td>
<td>SRM</td>
<td>400 pg/ml</td>
<td>26</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>β-Agonist</td>
<td>APCI</td>
<td>SRM</td>
<td>2.5 ppb</td>
<td>25</td>
</tr>
<tr>
<td>Tenidap</td>
<td>Anti-inflammatory</td>
<td>APCI</td>
<td>SRM</td>
<td>100 ng/ml</td>
<td>27</td>
</tr>
<tr>
<td>Phenylbutazone</td>
<td>Anti-coagulant</td>
<td>APCI</td>
<td>SRM</td>
<td>1 ng</td>
<td>28</td>
</tr>
<tr>
<td>Boldenone</td>
<td>Steroids</td>
<td>APCI</td>
<td>SRM</td>
<td>10 pg</td>
<td>29</td>
</tr>
<tr>
<td>Thromboxane</td>
<td>Anti-allergy</td>
<td>APCI</td>
<td>SRM</td>
<td>10 pg/ml</td>
<td>30</td>
</tr>
<tr>
<td>FK506</td>
<td>Immuno suppressor</td>
<td>PBI</td>
<td>SIM</td>
<td>500 pg</td>
<td>4</td>
</tr>
<tr>
<td>BN50727</td>
<td>PAF antagonist</td>
<td>PBI</td>
<td>MC</td>
<td>1 ng/ml</td>
<td>31</td>
</tr>
<tr>
<td>FK506</td>
<td>Immuno suppressor</td>
<td>TSI</td>
<td>SIM</td>
<td>1 ng</td>
<td>4</td>
</tr>
<tr>
<td>SM-6586</td>
<td>Ca antagonist</td>
<td>TSI</td>
<td>SRM</td>
<td>200 pg/ml</td>
<td>32</td>
</tr>
<tr>
<td>Pentamorphone</td>
<td>Anodyne</td>
<td>TSI</td>
<td>SIM</td>
<td>43 pg/ml</td>
<td>33</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>β-Agonist</td>
<td>TSI</td>
<td>SIM</td>
<td>1 pmol</td>
<td>34</td>
</tr>
<tr>
<td>Budesonide</td>
<td>Steroid</td>
<td>TSI</td>
<td>SIM</td>
<td>1.5 pmol</td>
<td>34</td>
</tr>
</tbody>
</table>

* Detection limit.

いる。安定同位素標識体を用いたトレーサ実験も、薬物動態研究では重要である。これらの場合、SIM 法で同時に複数の物質を測定する。LC/ESI/MS は誘導体化が簡単である。LC/ESI/MS 法では本来イオン化が容易なので、誘導体化の簡易性はあまり重要でないように思われる。シーケンス液は、現時点ではイオン化法や揮発性の向上に利用されているが、将来ポストカラム・プレマススペクトル誘導体化法として利用されるだろう。例えば、pH 調製や、高感度誘導体化や、複合体形成の添加法などに。シーケンス液が活用される可能性がある。LC/ESI/MS 法は、オートサンプラーレと連動可能で、プログラムで自動測定ができるので、定量分析で必要な終末フィルメンも可能である。

3. LC/MS による定量分析法バリデーション

定量分析法バリデーションに関して。ICH 第3版で決められた必要項目について、LC/MS による定量分析法バリデーションを検討した (Table 2)。正確性 (Accuracy) は真度 (Trueness) の名称に変わり、添加量のように真偽と認められた値と測定値との一致の程度を表す。それに必要なデータは最少 3 濃度。
Table 2. Validation of the Quantitative Analysis by LC/MS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Specificity</th>
<th>Truefulness</th>
<th>Repeatability</th>
<th>Range</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK506</td>
<td>Good</td>
<td>±8.5%</td>
<td>12.3%</td>
<td>25 pg–74 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>IRI-514</td>
<td>Good</td>
<td>±15.8%</td>
<td>48.8%</td>
<td>2 ng–40 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>SQ33,600</td>
<td>Good</td>
<td>±3%</td>
<td>11.5%</td>
<td>10 ng–320 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>Xanomeline</td>
<td>Good</td>
<td>±7.6%</td>
<td>7.9%</td>
<td>75 pg–5 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>CP-80,794</td>
<td>Good</td>
<td>±19%</td>
<td>12.5%</td>
<td>50 pg–10 ng/ml</td>
<td>Non</td>
</tr>
<tr>
<td>L-365,260</td>
<td>Good</td>
<td>±12%</td>
<td>11.5%</td>
<td>500 pg–500 ng/ml</td>
<td>Non</td>
</tr>
<tr>
<td>L-654,066</td>
<td>Good</td>
<td>±8%</td>
<td>11.6%</td>
<td>200 pg–20 ng/ml</td>
<td>Non</td>
</tr>
<tr>
<td>TNP-47</td>
<td>Good</td>
<td>±17.6%</td>
<td>10.8%</td>
<td>120 pg–20 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>Abanocil</td>
<td>Good</td>
<td>±13.5%</td>
<td>7.0%</td>
<td>10 pg–500 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>Good</td>
<td>±6.2%</td>
<td>8.3%</td>
<td>400 pg–200 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>Tenidap</td>
<td>Good</td>
<td>—</td>
<td>13.0%</td>
<td>100 ng–25 μg/ml</td>
<td>Non</td>
</tr>
<tr>
<td>Thromboxane</td>
<td>Good</td>
<td>±6.0%</td>
<td>8.7%</td>
<td>10 pg–10 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>BN50727</td>
<td>Good</td>
<td>±7.4%</td>
<td>6.1%</td>
<td>1 ng–200 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>SM-6586</td>
<td>Good</td>
<td>—</td>
<td>2.3%</td>
<td>0.2–10 ng/ml</td>
<td>Good</td>
</tr>
<tr>
<td>Pentamorphine</td>
<td>Good</td>
<td>±21.8%</td>
<td>—</td>
<td>0.04–67 ng/ml</td>
<td>Good</td>
</tr>
</tbody>
</table>

各濃度3回の繰り返し測定をし，それぞれの回収率，その平均値，および平均値と真の値との差を求める．真度の許容値は100±15%である．LC/ESI/MSおよびLC/APCI/MSによる定量法での真度は，100±15%の範囲内である．測定のばらつき（Variation）は，従来どおり精度（Precision）で表示される．均質な試料から多数回サンプリングされた複数の検体について，確立された測定条件下で測定された複数の測定値間のばらつきの程度（一致性）を表す．精度には次の三つのレベルがある．1）併行精度（Repeatability）は，従来の室内変動（Intraday precision）で，短時間内に同一条件下での測定の精度である．2）室内再現精度（Intermediate precision）は，従来の日間変動（Interday precision）で，同一施設内で，試験日，試験実施者，機器などを変更した測定の精度である．3）試外再現精度（Reproducibility）は，異なった施設間での測定の精度を表す．必要なデータは，最低3濃度（各濃度3回の繰り返し）を測定して，標準偏差，相関標準偏差，標準偏差の範囲を計算し，その許容値は±15%である．LC/ESI/MSおよびLC/APCI/MSによる定量法の精度は，LC/MSのインターフェースの測定条件，特に噴霧の安定性によって影響を受ける．早期の論文では，LC/MSの定量法の精度はばらつきが大きく問題であったが，今日では±15%の範囲内である．特異性（Specificity）では不純物，阻分離物，配合成分，常在成分などの共存下で，分析対象物を明確に識別し評価しうることが求められる．

確認試験には特異性が必要である．LC/ESI/MSおよびLC/APCI/MSによる定量法の特異性は全く問題ない．検出限界DL（Detection Limit）は，試料中の分析対象物のS/Nが3以上で，検出可能な最低量である．LC/ESI/SIM/MSで，FK506のon columnでの検出限界は3.33pgであった①．LC/ESI/SRM/MSで，FK506のon columnでの検出限界は97 fgであった②．限度試験には特異性と検出限界が必要である．定量限界QL（Quantitation Limit）は，分析法が±20%範囲内の精度，真度で測定できる試料中の分析対象物の濃度の最低量である．LC/ESI/MSおよびLC/APCI/MSによる定量法の定量限界は，20%範囲内の精度，真度である．検量線の直線性（Linearity）は，試料中の分析対象物の濃度に比例した測定値を与えることが必要である．LC/ESI/MSおよびLC/APCI/MSによる定量法は，時々濃度に応じて2本引きをしている場合があるが，ほとんどの場合1本で濃度に比例した測定値を与える．定量範囲（Quantitation Range）は，分析法が適切な精度，真度，および直線性を与える試料中の分析対象物の濃度の上限と下限の間隔で，10²～10³の幅が必要である．LC/ESI/MSおよびLC/APCI/MSによる定量法の定量範囲は，時々10²以下の幅の場合があるが，ほとんどで
10^2〜10^3 の幅を確保している。定量はチャンピオンデータではなくパリデーションできることが必要である。マルチプライヤー電圧を上げれば、感度は上がっても定量範囲は狭くなり、検出器の劣化に繋がる。システム適合性試験では、標準試料を繰り返し注入してデータをとり、再現性、テーリング係数、分離能をみる。

4. LC/MS による微量定量のノウハウ

<table>
<thead>
<tr>
<th>LC/MS による微量定量のノウハウ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) イオン化の最適条件の選択</td>
</tr>
<tr>
<td>(2) 噴霧の安定化……先出し法、先引っ込め法</td>
</tr>
<tr>
<td>(3) LC/ESI/MS および LC/APCI/MS のインターフェース測定条件</td>
</tr>
<tr>
<td>(4) MS 測定条件</td>
</tr>
<tr>
<td>(5) ノイズレベルの減少</td>
</tr>
<tr>
<td>(6) 試料の前処理</td>
</tr>
<tr>
<td>(7) HPLC 測定条件</td>
</tr>
<tr>
<td>(8) LC/SIM/MS および LC/SRM/MS 測定条件</td>
</tr>
<tr>
<td>(9) 高感度定量法</td>
</tr>
</tbody>
</table>

4.1 イオン化の最適条件の選択

薬物がカルボン酸、スルフォン酸、リン酸の部分構造を有する場合は負イオンを観測し、アンモニアムカチオンになりやすい薬物は正イオンを観測する。中性の薬物の場合には、AcONH₄ でアンモニアム付加体とし正イオンを観測するか、硫酸塩付加体とし負イオンを観測する。しかし水やガラス容器には Na, K が含まれていて、Na⁺, K⁺ 付加体にもなる。しかも薬物の濃度によってそれらの比率

1) Ionization by LC/ESI/MS

\[
\begin{align*}
\text{R-COO}^- & \rightarrow \text{LCESI/NEGMS} & \text{R-COO}^- & \rightarrow \text{LCESI/POSMS} \\
\text{R-N}^- & \rightarrow \text{LCESI/POSMS} & \text{R-N}^+ & \rightarrow \text{LCESI/NEGMS}
\end{align*}
\]

2) Pre-column delivirization for LC/ESI/MS

\[
\begin{align*}
\text{R-Br} & \rightarrow \text{LCESI/POSMS} & \text{RSC (NH₂)₂} & \rightarrow \text{LCESI/NEGMS} \\
\text{ROH} & \rightarrow \text{LCESI/NEGMS} & \text{Benzyl} & \rightarrow \text{LCESI/POSMS}
\end{align*}
\]

3) Post-column delivirization for LC/ESI/MS

A: 0.1%TFA/CH₃CH₂OH
B: 0.1%TFA/CH₃CH₂OH
C: 0.1%TFA/5%MeOH/CH₃CH₂OH

Fig. 1. Selection of appropriate ion detection of drugs by LC/MS.

—381—
Z. Tozuka

が変わり、検量線の直線性が悪くなる原因になる。水はイオン交換水を蒸留したもの、ガラス容器もシリル化したり、Na, K less のガラス容器を使用し、シース液に濃い 20〜100 m M AcONH₄ を使用することによって、ほとんどアンモニウム付加体にすることができ、直線性の良い検量線が得られた。しかし、薬物によってあまりイオンされないことのあるもの。この場合には誘導体化を検討する必要がある。ブレカラム法の誘導体化には、ハロゲン化体のチオアンモニウム誘導体、アルコールのニトロフタール酸誘導体、およびチオールのダンシル誘導体などがある。ポルタカム法はシース液を使って簡単にできる。TFA, DDQ, SbF₅ によって芳香族化合物のベリレンやアントラセンのカチオンが生成し、ESI ACTIVE 体にする (44) (Fig. 1).

4.2 噴霧の安定化……先進め合い法

<table>
<thead>
<tr>
<th>噴霧の安定化</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 先出し法。先進め合い法</td>
</tr>
<tr>
<td>(B) どうしたら噴霧を安定化できるか……先進め合い法</td>
</tr>
<tr>
<td>1) Needle の sample tube を sheath tube より 1mm 引っ込む</td>
</tr>
<tr>
<td>2) Sheath gas 壓を調整する</td>
</tr>
</tbody>
</table>

LC/ESI/MS でどうしたら喷霧を安定化できるのだろうか、この課題は、ニードルを修理中にメタノールで検査している時に、偶然に遭遇した現象から安定な喷霧法をみつけて解決された。内径が 100 μm キャビラリーの一端にメタノールの入ったシリンジをつなぎ、他端を LC/ESI/MS のニードルのサンプルチューブにつないで、インフュージョンポンプで自動的にシリンジのピストンを押しながら、シースチューブのガス圧を調節して噴霧の状況を調べる。先進め合いプローブ法 (probe pulled sample tube (Fig. 2)) はサンプルチューブをシースチューブよりも 1 mm 引っ込んだプローブで噴霧する方法で、先出しプローブ法 (probe projected sample tube (Fig. 2)) はサンプルチューブをシース

Fig. 2. Conditions for stable electrospray ionization.

—382—
チューブよりもも1 mm 飛び出したブロープで噴霧する方法である。先出しブロープ法では、容易に霧状に噴霧することができるがラグビーポールのような形である。先出しブロープ法では、最適のシース圧できれいかえす状態に喷霧される。いずれの方法でもシース圧が低すぎるとボタボタと滴になるし、高すぎると液滴で飛び出す。この現象はニードルをESI/LC/MS体に装着したブロープのブラックボックス内でも起こっていて、ESI/LC/MSの安定性にイオン化と密接な関係にある。ボタボタ滴や液滴ではイオンは生成されない。先出しブロープ法で、メタノールの流速を試験管の流速と同じにして、きれいな霧状に噴霧される場合のシースガス圧を探し、最適条件をメモしておく。TSQ7000ではサンプルチューブを金属細管であるが、TSQ7000ではガラスキャビラリーで、それぞれの最適シースガス圧は異なる。次にメタノールの代わりにサンプルを溶かした溶液を用いて最適条件を探る。サンプルが1 mmの濃度になるように、30 mm AcONa、ウメタノール（1:1）に溶かした溶液を用いて、同上を実施すれば良い。流速が4 µl/minの場合、シースガス圧はTSQ7000で25 psi（TSQ7000では40 psi）が最適で、移動相の流速が遅い時はもっと強くする。例えば、流速0.2 ml/minではシースガス圧は70 psi（TSQ700および7000共通）が最適である。この先出しブロープ法で安定した状態の噴霧を会得するのが、安定なイオンを生成するコツである。定量を行う際には再現性が重要で、一定の濃度の液を持続して注入している場合、一定のイオン強度が持続してなければならず、先出しブロープ法で得られる安定な噴霧は、LC/ESI/MSで安定したイオン強度のシグナルを得るコツである。

4.3 LC/ESI/MSおよびLC/APCI/MS インターフェイス条件

4.3.1 LC/ESI/MS インターフェイス条件

<table>
<thead>
<tr>
<th>LC/ESI/MS インターフェイス条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Needle type (先出し法) (固定)</td>
</tr>
<tr>
<td>(B) Needle distance (1.3 cm) (固定)</td>
</tr>
<tr>
<td>(C) Ionization high voltage (3.5〜5.0 kV) (固定)</td>
</tr>
<tr>
<td>(D) Sheath liquid (固定)</td>
</tr>
<tr>
<td>(E) Sheath gas (20〜90 psi) (微調節)</td>
</tr>
<tr>
<td>(F) Drying gas または auxiliary gas (Unit 5〜10) (固定)</td>
</tr>
<tr>
<td>(G) Heated capillary temperature (150〜275℃) (固定)</td>
</tr>
<tr>
<td>(H) 変動率を5%以下にする。</td>
</tr>
</tbody>
</table>

噴霧の安定化をどのようにチェックするか

1) PROF 画面でピークを捉える
2) CENT に変更 SIM で経時的に測定する
3) GRAPH 画面でピーク強度の経時的変動を書く
4) .rsd コマンドを入力し30秒間の変動率を表示する

先出しブロープ法でニードルをインターフェイスに装着し、ニードル距離が1.3 cm、1 mm 試料/50% 30 mm AcONa、ウメタノール溶液の流速を4 µl/min、シースガス圧を25 psi（TSQ7000では40 psi）、イオン化高電圧 -3.7 kV の条件にしてイオン化し、MSをスキャンする。しかし試料のイオンが検出されない場合がある。ボタボタと滴になり、うまくスプレーされないからである。この場合シースガス圧を一度上げてから、徐々に下げていくと良い。この操作で、先出しブロープ法での
1) Optimization of ionization high voltage for projected sample tube

![Graph 1]

2) Optimization of ionization high voltage for pulled sample tube

![Graph 2]

Fig. 3. Optimization of ionization high voltage for ESIMS.
安定な噴霧ができるようになり、LC/ESI/MS で安定なイオン強度のピークが持続するようになる (Fig. 2)。

ESI-LC/MS のインターフェースのニードル距離は、イオン強度に関係しているので、検討した結果を紹介する。ニードル距離を 1 cm から 3 cm の間で変化させると、先出しブローフ法では、ニードル距離を 2.3 cm に設定した時イオン強度が最も強くなり、近づけてパックグランドのノイズが増え、遠ざけると試料のイオン強度が減少する。先引込みブローフ法では、ニードル距離を 1.3 cm に設定した時イオン強度は最も強く、しかも最も安定な条件になり、近づけても遠ざけても試料のイオンを捕らえるのがむずかしい。

イオン化電圧を -3 kV から -5 kV (positive mode では -3 kV 以上ではイオン化効率が急激に低下し -5 kV 以下では放電するので危険) まで変えて、最適イオン化電圧を検討した (Fig. 3)。流速 4 μl/min では、先出し法で -3.5 kV、先引込み法で -3.7 kV でイオン強度が最も強く、イオン化電流は 5 × 10^-8 から 3 × 10^-7 A の範囲で安定していた。0.2 ml/min の流速ではどちらも最適イオン化電圧 -4.5 kV である。

シーシャ液はイオン化や噴霧をサポートするのに使用する。移動相の水系と有機溶媒系の比率が 1:9 または 9:1 の極端な場合にはシーシャ液のサポートが必要である。現在 TSQ7000 では内径が 100 μm のキャビラリーをサンプルチューブとしている。キャビラリーのサンプルチューブの外側をシーシャ液が流れるので有機溶媒のみのシーシャ液はキャビラリーのポリアミドコートをはがすので注意すべきである。

ミクロカラムで流速が数 μl/min であった初期の TSQ7000 では金をコートしたグラスキャビラリーであったが、セミミクロカラムで流速が数百 μl/min になった現在の TSQ7000 では heated capillary になり LC/ESI/MS で流速が 10 μl/min までは 175 ℃、200 μl/min までは 225 ℃、500 μl/min では 250 ℃、1 ml/min では 275 ℃ に設定され、LC/APCI/MS ではいずれの流速でも 150 ℃ に設定される。流速が少ないのに heated capillary の温度を高くしすぎると Na, K 付加体ができやすいので注意する。

安定なイオン強度のチェック法はどうしたらいいのだろうか。短時間でイオン強度の安定性を見たい場合、TSQ7000 では .plotic と .rsd のコマンドを使う。PROF 画面で目的のイオンのピークを最適化しておき、GRAPH 画面で .plotic を実行すると tic のプロットが行われる。インシュレーションポンプで注入した場合、プロットを見ながらシースガスの流速、イオン化電圧、ニードル距離を変える、tic の強度、安定度でチェックするのに .rsd を実行し、表示される変動値が 5% 以下になるよう微調整する。TSQ7000 では GUIDE 画面でまず TUNE、次に STABLE をクリックする、表示される変動値が 5% 以下になるようシースガス圧を微調整する。

次に 50% 30 mm AcONH₄ 3 水メタノール溶液の移動相を、流速 0.2 ml/min で、LC カラムを通さず LC/ESI/MS インターフェイスの先引込みブローフ法で、ニードル距離が 1.3 cm、シースガス圧を 70 psi、イオン化高電圧 -4.5 kV の条件にして、噴霧する。1 mm 試料/50% 30 mm AcONH₄ 3 水メタノール溶液 10 μl を、オートサンプラーからインジェクションし、LC/ESI/MS で安定なイオン強度のピークを確認する。次にシースガス圧の微調整によって安定な噴霧によるピークを捕らえる。同じ濃度の試料をオートサンプラーから数回インジェクションして、GRAPH 画面で同じピーク強度の再現性を確認するか、データの CHRO 画面でピーク面積値の再現性を確認する。この操作は LC/ESI/MS インターフェイス条件設定の基本である。
4.3.2 LC/APCI/MS インターフェイス条件

<table>
<thead>
<tr>
<th>LC/APCI/MS インターフェイス条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Nebulizer probe temperature (NPT) (300〜500°C) (固定)</td>
</tr>
<tr>
<td>(B) Nebulizer gas pressure (NGP) または sheath gas (70〜100 psi) (変動)</td>
</tr>
<tr>
<td>(C) Corona discharge needle current (CDNC) (2.5〜5.0 μA) (固定)</td>
</tr>
<tr>
<td>(D) Auxiliary gas flow (AGF) (3〜5 l/min, Unit 10) (固定)</td>
</tr>
<tr>
<td>(E) Nitrogen curtain gas flow (NCGF) (1〜3 l/min) (固定)</td>
</tr>
</tbody>
</table>

LC/APCI/MS では LC からの溶出液を、大気圧下で LC/APCI/MS heated nebulizer (Sciex) または vaporizer (Finnigan) インターフェイスから霧状にスプレーする。Nebulizer probe temperature (NPT) は，500°C 付近の一定値に固定する。vaporizer は流量 0.2 ml/min で 350°C，0.5 ml/min で 400°C に設定し heated capillary temperature を 150°C にする。Nebulizer gas pressure (NGP) (Sciex) または sheath gas pressure (Finnigan) は 70〜100 psi の範囲で流量に応じて変動する。コロナ放電により霧状の溶出液をイオン化し、いわゆる化学イオン化 (CI) で試料をイオン化し、イオンと溶液分子と差別化して、真空系にイオンを導入する。Corona discharge needle current (CDNC) は 2.5〜5.0 μA の一定値に固定する。Auxiliary gas flow (AGF) は 3〜5 l/min または Unit 10 (Finnigan) に、nitrogen curtain gas flow (NCGF) は 1〜3 l/min で固定し、真空系にイオンを導入するのをサポートする (Table 3).

4.4 MS 測定条件

Capillary (Finnigan MAT) の外側の tube lens, または orifice (Sciex) の加速電圧 (ORV) は 20〜100 V に設定する。試料イオン、溶液中のイオンおよび分子との衝突エネルギーに関連しコリジョンによるフラグメントーションが起こる。非共有結合付加体では解離する場合がある。Q1, Q3 のスキャニングモードは、フルスキャン、SIM, SRM によって設定が異なる。定性分析では分解能が高い方が正確であるが、定量分析では、分解能を低くして同位体も同じピークに含めて、イオン値を増やすテクニックも採用される。この場合 Q1, Q3 の電圧を上げ分解能を下げる。SIM での dwell time (DT) は 0.1〜3 second である。SRM で Q2 のコリジョンのガス (CG) は一般にアルゴンガスが使われる。Collision gas pressure (CGP) は 0.1〜5 mTorr で開裂の容易さに応じて変える。Q2 の構造によって最適 CGP は異なる。TSQ700 では 1 mTorr, TSQ7000 では 2 mTorr を基準にして試料に応じて CGP

Table 3. Optimum LC/APCI/MS Conditions for Quantitative Analysis

<table>
<thead>
<tr>
<th>Drug</th>
<th>NPT (°C)</th>
<th>NGP (psi)</th>
<th>AGF (l/min)</th>
<th>NCGF (l/min)</th>
<th>CDNC (μA)</th>
<th>DT (ms)</th>
<th>ORV (V)</th>
<th>MV (kV)</th>
<th>CG (mT)</th>
<th>CE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK506</td>
<td>350</td>
<td>70</td>
<td>5 unit</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>40</td>
<td>1.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CP-80,794</td>
<td>500</td>
<td>95</td>
<td>3.4</td>
<td>1.2</td>
<td>-2.5</td>
<td>500</td>
<td>-33</td>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>L-365,260</td>
<td>500</td>
<td>80</td>
<td>1</td>
<td>—</td>
<td>3</td>
<td>100</td>
<td>55</td>
<td>-3.2</td>
<td>Ar 0.4</td>
<td>50</td>
</tr>
<tr>
<td>L-654,066</td>
<td>500</td>
<td>70</td>
<td>2</td>
<td>—</td>
<td>3</td>
<td>400</td>
<td>70</td>
<td>-3.2</td>
<td>Ar 0.4</td>
<td>50</td>
</tr>
<tr>
<td>TNP-470</td>
<td>485</td>
<td>80</td>
<td>0.6</td>
<td>1.2</td>
<td>—</td>
<td>300</td>
<td>40</td>
<td>-3.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Abanoquil</td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>Ar 0.35</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cenbuterol</td>
<td>450</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>15</td>
<td>—</td>
<td>Ar 2</td>
<td>15</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>475</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>384</td>
<td>—</td>
<td>—</td>
<td>Ar 1</td>
<td>34</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>450</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>15</td>
<td>—</td>
<td>Ar 2</td>
<td>15</td>
</tr>
<tr>
<td>Tenidap</td>
<td>500</td>
<td>100</td>
<td>4</td>
<td>—</td>
<td>-3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Ar 0.61</td>
<td>22</td>
</tr>
<tr>
<td>Phenybutazone</td>
<td>500</td>
<td>5bar</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Ar 0.2</td>
<td>70</td>
</tr>
</tbody>
</table>

—386—
知的な手順の高感度定量分析におけるDrugs by LC/API/MS

を変える。ガス圧が高いほど衝突の確率が増す。Collision energy (CE) は、positive mode では -10 eV から -100 eV, negative mode では +10 eV から +100 eV で、開裂の容易さに応じて変える。CE は加速電圧で、高いほど衝突のエネルギーが高く、開裂される。Multiplier voltage (MV) は感度、ベースラインの安定性、定量幅に影響し、上げすぎるとマルチプライナーの劣化をはやめる。一般に Finnigan MAT では 1−1.3 kV と Sciex で 3−4 kV である（Table 3）。

4.5 ノイズレベルの減少

<table>
<thead>
<tr>
<th>ノイズレベルの減少</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) ノイズとは？ ノイズは定量にどう影響するか</td>
</tr>
<tr>
<td>(B) どうしたら LC/MS のノイズレベルを減少できるか</td>
</tr>
<tr>
<td>(1) 試料の前処理</td>
</tr>
<tr>
<td>(2) HPLC 移動相の選択</td>
</tr>
<tr>
<td>(3) カラムスイッチング法</td>
</tr>
<tr>
<td>(4) セパレータを採用する</td>
</tr>
<tr>
<td>(5) SIM 法の採用</td>
</tr>
<tr>
<td>(6) MS/MS 法の採用</td>
</tr>
</tbody>
</table>

検出器のノイズは、検出器そのものの性能、検出器の置かれた環境、検出器で測定する検体から由来する。10⁻⁷ Torr の環境で、Q1, Q3 でスキャンで限定されたイオンのみを検出す MS は、amol (6×10⁵) のイオンを検出す性能を有する。amol (6×10⁶) のイオン強度はたかだか 10² である。ノイズと定量限界とは極めて密接な関係にあることを Fig. 4 を用いて説明する。HPLC の移動相の選択で、a) 溶出点の特異イオンなどの有機溶媒を使用したり、有機溶媒/10 mm AcONH₄ の比率が 80% 以上に使用したり、塩素が不安定な状態で、ESI/LC/MS で m/z 75～975 間をスキャンしたマススペクトルで、明らかに妨害ピークがありノイズレベルのイオン強度は 132,193 と高。b) は HPLC 用アセトニトリルと 10 mm AcONH₄ (水はイオン交換水を蒸留した精水) を 25% から 75% の範囲にした移動相を、先のとおりプローブ法で安定な塩素状態の ESI-LC/MS で、m/z 75～975 間をスキャンしたマススペクトルで、妨害ピークがなくノイズレベルのイオン強度は 1,379 と低い。これが安定した ESI/LC/MS のノイズレベルである。しかしこのフルスキャンでは amol のイオン強度 10³は知還できない。ノイズレベルの標準化の効果を示している。a) は血液中の 34.6 pg/ml の FK506 を m/z 821.5 の SIM で測定したマスクロマトグラムで、b) はプラクス血液のマスクロマトグラムである。FK506 ピークが溶出した後、移動相を外へ排出するようにセパレータを切り替えていている。イオンは観測されない。クロマトグラム上に見られる段差は、生体試料のノイズレベルを示している。前処理の程度によって、段差の高さは変わる。SIM でも生体試料の抽出物のバックグラウンドは高く、24.6 pg/ml の FK506 で、定量限界となる。MS/MS の効果を示している。a) はメタノールに溶解した FK506 を、98 fg 注入して LC/MS/MS で測定した時のマスクロマトグラムである。b) のプランクは 278 のノイズレベルである。FK506 を 98 fg 注入した時のピーク強度は 2,049 である。S/N 3 以上で検出されている。ここで強調したいのは「検出限界は被験物質のイオン量とノイズのイオン量比に依存する。ノイズレベルに比べ明らかに被験物質のピークと識別でき、S/N 3 のピークの濃度が検出限界となる。ノイズレベルをいかに減少するかの工夫が微量定量法の真髄である。」ということです。

4.6 試料の前処理

HPLC 分析ですでに、試料の前処理が 1) 妨害ピーク、2) カラム内での各成分の分散（分離度）、3)
(1) Effect of mobile phase
 a) High mass range noise of mobile phase
 (acetonitrile/10 mM AcONH₄ = 80/20)
 132,198
 b) No noise of mobile phase (acetonitrile/10 mM AcONH₄ = 25/75–75/25)
 1,379

(2) Effect of SIM and separator
 a) 24.6 pg/ml of FK506 (peak area 57,278) SIM at m/z 821.5
 b) Blank blood separator on: elute in LCMS, separator off: elute out of system

(3) Effect of SRM
 a) 97 fg of FK506
 SRM: parent ion at m/z 821.5, product ion at m/z 768.4
 b) Blank methanol

Fig. 4. Relations between noise level and detection limit.
カラムの耐久性。4) セルの汚染などに影響することは、経験している。LC/MS ではインタフェイスからレンズ、Q ポール、イオンコレクタまでの污染に影響する、定量分析のパラメーターを考えると分析計の性能を保持する管理が大切である。

前処理法として、酸性または塩基性薬物では、生体試料中から pH を変えた有機溶媒で抽出後再溶する精製方法。中性薬物では、有機溶媒抽出と脂相抽出の組み合わせによる精製方法を用いることにより、LC/MS での定量分析のパラメータが可能になる。抗体を用いたアフィニティークロマトグラフィーまたはカラムスイッチング法など、質量分析計を汚染しない工夫も重要である。筆者は、HFLC のカラムと MS の間にセパレータを設置し、被験物質のピークが溶出してから次の注入になる被験物質のピークまで、コンピュータ制御で溶出液を系外に排出し、質量分析計の汚れを少額にした。この方法はバックグラウンドのノイズレベルを少なくする効果があった。

4.7 HPLC 測定条件

4.7.1 LC カラムの選択 LC/ESI/MS や LC/APCI/MS ではミクロカラム、セミミクロカラム、およびコンベンショナルカラムを使用する (Table 4)。そこで HPLC のカラムの内半径 (i.d.) を変えたときの移動相の流速をどのようにすれば良いか検討した。μCapillary c-18, 0.32 mm × 15 cm (LC PACKING-INTERNATIONAL), Develosil ODS, 2.0 mm × 15 cm および 4.6 mm × 15 cm (＝46 mm × 15 cm (野村化学株) を LC/ESI/MS や LC/APCI/MS で検討した結果、移動相の流速をそれぞれ 4 〜 5 µl/min, 200 µl/min および 1 ml/min にしたとき、ピークの形状。半価幅時間と保持時間から求めた理論段数 (N=16

<table>
<thead>
<tr>
<th>Drug</th>
<th>ODS column</th>
<th>Column size (mm)</th>
<th>Mobile phase</th>
<th>Flow rate (m/min)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK506</td>
<td>LC Paking</td>
<td>0.32 × 150</td>
<td>MeCN : AcOH : H₂O</td>
<td>0.004</td>
<td>1</td>
</tr>
<tr>
<td>IRI-514</td>
<td>YMC</td>
<td>2 × 250</td>
<td>MeOH : MeCN : HCO₃N₂H : HCO₃H</td>
<td>0.25</td>
<td>11</td>
</tr>
<tr>
<td>SQ33,600</td>
<td>Hypersil</td>
<td>1 × 100</td>
<td>MeOH : AcOH₃H : TFA</td>
<td>0.04</td>
<td>12</td>
</tr>
<tr>
<td>Endorphin</td>
<td>RP</td>
<td>Cartridge</td>
<td>MeCN : HCO₃N₂H</td>
<td>0.28</td>
<td>15</td>
</tr>
<tr>
<td>Xanomeline</td>
<td>Hypersil</td>
<td>1 × 10</td>
<td>MeCN : AcOH₃H : AcOH</td>
<td>0.05</td>
<td>17</td>
</tr>
<tr>
<td>CP-80,794</td>
<td>Nova Pak</td>
<td>3.9 × 150</td>
<td>MeOH : H₂O</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>L-365,260</td>
<td>Perkin Elmer</td>
<td>4.6 × 30</td>
<td>MeOH : AcOH₃H</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>L-554,066</td>
<td>Syn Chropac</td>
<td>4.6 × 50</td>
<td>MeOH : AcOH₃H : TFA</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>LSD analogs</td>
<td>LC Paking</td>
<td>0.3 × 150</td>
<td>MeCN : MeOH : AcOH₃H</td>
<td>0.0035</td>
<td>22</td>
</tr>
<tr>
<td>TNP-470</td>
<td>Hypersil</td>
<td>4.6 × 250</td>
<td>MeCN : AcOH₃H</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>Abanoquil</td>
<td>Perkin Elmer</td>
<td>4.6 × 30</td>
<td>MeOH : AcOH₃H : TFA</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Clenbuterol</td>
<td>a-Chrom</td>
<td>3 × 250</td>
<td>MeCN : AcOH₃H</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>Ultracarb</td>
<td>4.6 × 30</td>
<td>MeCN : AcOH₃H</td>
<td>1.5</td>
<td>26</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>d-Chrom</td>
<td>3 × 250</td>
<td>MeCN : AcOH₃H</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>Tendip</td>
<td>Nova Pak</td>
<td>3.9 × 150</td>
<td>MeOH : TFA</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>Phenylbutazone</td>
<td>Perkin Elmer</td>
<td>4.6 × 33</td>
<td>MeCN : H₂O</td>
<td>1.5</td>
<td>28</td>
</tr>
<tr>
<td>Boldenone</td>
<td>Hypersil</td>
<td>1 × 100</td>
<td>MeOH : AcOH₃H</td>
<td>0.04</td>
<td>29</td>
</tr>
<tr>
<td>Thromboxane</td>
<td>Inertil</td>
<td>0.7 × 150</td>
<td>Column switching</td>
<td>0.02</td>
<td>30</td>
</tr>
<tr>
<td>BN50727</td>
<td>Microspher</td>
<td>4.6 × 100</td>
<td>MeCN : MeOH : H₂O</td>
<td>0.45</td>
<td>31</td>
</tr>
<tr>
<td>SM-6586</td>
<td>Nova Pak</td>
<td>3.9 × 150</td>
<td>AcONH₃H : MeCN</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>Pentamorphine</td>
<td>Bondapak</td>
<td>4.6 × 150</td>
<td>AcONH₃H : MeCN</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>LiChrospher</td>
<td>4 × 50</td>
<td>AcONH₃H : MeOH</td>
<td>1.4</td>
<td>34</td>
</tr>
<tr>
<td>Budesonide</td>
<td>Supelcosil</td>
<td>4.6 × 33</td>
<td>AcONH₃H : MeOH</td>
<td>1.4</td>
<td>34</td>
</tr>
</tbody>
</table>

—389—
Z. Tozuka

i.d. 2 mm のセミクロラムで流速 200 µl/min の線速度は、\(v = 200 / (3.14 \times 1 \times 1) = 63.7 \) mm/min, i.d. 0.32 mm のミクロラムで流速 4〜5 µl/min の線速度は、\(v = 4 \)（または 5 / (3.14 \times 0.16 \times 0.16) から 49.8〜62.2 mm/min であり、線速度を約 60 mm/min として、各ラム i.d. での流速を計算することができる。分離度は、流速と分散に依存するため、微量物質はミクロラムで分析するのが良い。コンベンショナルラムで流速を遅くすると分散する。試料 1 µg をインジェクションし、線速度を約 60 mm/min に一定にした時、i.d. 4.6 mm のコンベンショナルラムでの感度は 0.001/1 = 0.1 ppm, i.d. 2 mm の 0.001/0.2 = 0.5 ppm（コンベンショナルラムの 5 倍）、i.d. 0.32 mm のミクロラムでの感度は 0.001/0.0048 = 20.8 ppm（コンベンショナルラムの 208 倍）で、ミクロラムで分析するのが良い。耐久性は充填層に依存するためコンベンショナルラムが良い。配管内径とインジェクターからラム、カラムから分析計までのドッドポリュームが、カラム内径との組み合わせにより分散する。コンベンショナルラムの配管内径は 0.25 mm、内径 2 mm 以下のカラムの配管内径は 0.13 mm のビックチュープから内径 0.1 mm のポリシルキャピラリーを使用する。カラム温度は移動相の粘性に影響するので移動相のピーティングを行うと良い。

4.7.2 HPLC 移動相の選択 移動相には揮発性の有機酸・有機塩基の組み合わせによる緩衝液を使用し、不揮発性の無機酸・無機塩基の緩衝液は、MS の内部で、キャピラリーを詰まらせるので避け、HPLC 移動相の選択により、高質量側 (m/z 1〜1,000 (HNS)) まで強いノイズがある場合、低質量側 (m/z 1〜300 (LNS)) に強いノイズがある場合や、全くノイズが出ない場合 (NNS) がある。異常に強いノイズがある場合、アペーリング法により不純物のピークが明確になる。高速液体クロマトグラフィー用有機溶媒や残留農薬検査ガスクロ用有機溶媒等の高純度の溶媒を使用する。水をイオン交換水を蒸留した純水を使用する。移動相をいれる容器もポリタンなどは可塑剤が溶出し、妨害ピークになる。有機溶媒と水の比率、試料のイオン化、試料を溶かした液の伝導度が噴霧の細かい液滴となりやすさに関与していて安定な噴霧となりノイズが減少する。有機溶媒の比率が高い場合も異常に強いノイズがでる。こ

<table>
<thead>
<tr>
<th></th>
<th>HPLC mobile phase</th>
<th>Rate</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF:5% AcONH₄</td>
<td>20:80</td>
<td></td>
<td>HNS</td>
</tr>
<tr>
<td>DMSO:5% AcONH₄</td>
<td>20:80</td>
<td></td>
<td>HNS</td>
</tr>
<tr>
<td>n-BuOH:5% AcONH₄</td>
<td>Saturate</td>
<td></td>
<td>HNS</td>
</tr>
<tr>
<td>Dioxane:5% AcONH₄</td>
<td>20:80</td>
<td></td>
<td>HNS</td>
</tr>
<tr>
<td>MeCN:5% AcONH₄</td>
<td>10:90</td>
<td></td>
<td>HNS</td>
</tr>
<tr>
<td>MeCN:5% AcONH₄</td>
<td>50:50</td>
<td></td>
<td>NNS</td>
</tr>
<tr>
<td>MeCN:5% AcONH₄</td>
<td>75:25</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>HCO₃H:MeCN:5% AcONH₄</td>
<td>0.5:75:25</td>
<td></td>
<td>NNS</td>
</tr>
<tr>
<td>HCO₃H:MeCN:5% AcONH₄</td>
<td>5:75:25</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>HCO₃H:MeCN:5% AcONH₄</td>
<td>10:75:25</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>AcOH:MeCN:5% AcONH₄</td>
<td>0.5:75:25</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>AcOH:MeCN:5% AcONH₄</td>
<td>5:75:25</td>
<td></td>
<td>HNS</td>
</tr>
<tr>
<td>HN(Et)₂:MeCN:5% AcONH₄</td>
<td>5:75:25</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>28% NH₃:MeCN:5% AcONH₄</td>
<td>0.1:75:25</td>
<td></td>
<td>NNS</td>
</tr>
<tr>
<td>28% NH₃:MeCN:5% AcONH₄</td>
<td>1:75:25</td>
<td></td>
<td>NNS</td>
</tr>
<tr>
<td>28% NH₃:MeCN:5% AcONH₄</td>
<td>15:75:25</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>MeOH:5% AcONH₄</td>
<td>50:50</td>
<td></td>
<td>NNS</td>
</tr>
<tr>
<td>MeOH:5% AcONH₄</td>
<td>75:25</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>EtOH:5% AcONH₄</td>
<td>50:50</td>
<td></td>
<td>LNS</td>
</tr>
<tr>
<td>iPA:5% AcONH₄</td>
<td>50:50</td>
<td></td>
<td>NNS</td>
</tr>
</tbody>
</table>
Know-How of the High Sensitivity Quantitative Analysis of Drugs by LC/API/MS

A) High mass range noise (HNS) of mobile phase (acetonitrile/10 mM AcONH₄=80/20)

B) Low mass range noise (LNS) of mobile phase (methanol/10 mM AcONH₄=80/20)

C) No noise (NNS) of mobile phase (acetonitrile/10 mM AcONH₄=25/75–75/25)

Fig. 5. Noise peaks derived from mobile phase.

の場合は 0.01～0.1% のトリフルオロ酢酸やトリエチルアミンを添加したりして、イオン化や伝導度を良くしノイズを少なくする。水の比率が高い場合も、スプレーがうまくいかずノイズが増え、ピークら出なくなるので、シース液にイソプロピノールやアセトニトリルを多くして、噴霧をサポートする。グラジェントをかける時も、シース液にイオン化を調整する緩衝液を加えたり、イソプロピノールやア...
セトニトリルを配合して、噴霧しやすい工夫をする（Table 5, Fig. 5）。

4.8 LC/SIM/MS および LC/SRM/MS 測定条件

LC/SIM/MS の特徴は、ウインドウを狭くし被験物質の領域に限定して、他領域のノイズを避けること、掃引幅時間短くして検出幅時間に検出する目的ピークのイオン量を増し、感度を上げることにある。SIM を実施する時のコツは、1）ウインドウを狭くしすぎない、各イオンごとのウインド幅は 2 マスは必要である。プロファイルの分布曲線ピークからセントロイドの線ピークに変換する時 2 マス

Fig. 6. Mass spectra of FK506 (ESIMS and ESIMS/MS, positive and negative).
Know-How of the High Sensitivity Quantitative Analysis of Drugs by LC/API/MS

にまたがるので、1 マスのウインドウ幅の場合、イオンシグナルを連続して拾えなくなり、マスクロマ
トグラムがガタガタする。2 マスのウインドウ幅なら、シグナルを連続して拾いスムーズなマスクロマ
トグラムになる。2) プロファイルの分布曲線ピークのピークとノイズの境界を何パーセントにするか
により、拾うイオン量が増減する。通常の設定は 30% であるが 20% にする。.pkcentb コマンドによ
り prof から cent に変換する % を変える。3) dwell time は設定したマスウインドウの数に応じて適
切にする。どれくらいの dwell time が良いかをみる。以上的事を考慮して SIM プログラムを作成

Fig. 7. Mass spectra of FK506 (ESIMS and ESIMS/MS, positive and negative).
Z. Tozuka

Fig. 8. Structure of FK506 and bond cleavage by MS/MS.

Table 6. Fragmentations of FK506 Observed in EI, CI, and FAB Mass Spectra

<table>
<thead>
<tr>
<th>Fragmentation</th>
<th>EI/POS</th>
<th>CI/POS</th>
<th>CI/NEG</th>
<th>ESI/POS 30 V</th>
<th>ESI/POS 80 V</th>
<th>FAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子イオン</td>
<td>803</td>
<td>804.5</td>
<td>804.1</td>
<td>821.8</td>
<td>821.7</td>
<td>826.4 (M+Na)</td>
</tr>
<tr>
<td>M-H_{2}O</td>
<td>785</td>
<td>786.5</td>
<td>786.2</td>
<td>785.3</td>
<td>786.7</td>
<td>715.5 (692+Na)</td>
</tr>
<tr>
<td>M-2H_{2}O</td>
<td>767</td>
<td>768.5</td>
<td>768.1</td>
<td></td>
<td></td>
<td>697.5 (674+Na)</td>
</tr>
<tr>
<td>a-b(111)</td>
<td>692</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>653.4 (630+Na)</td>
</tr>
<tr>
<td>a-b-H_{2}O</td>
<td>674</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>658</td>
</tr>
<tr>
<td>a-c(155)</td>
<td>658</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>a-c-H_{2}O</td>
<td>630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>620</td>
</tr>
<tr>
<td>a-d(183)</td>
<td>620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>602</td>
</tr>
<tr>
<td>a-d-H_{2}O</td>
<td>602</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>593.5 (593+Na)</td>
</tr>
<tr>
<td>a-d-2H_{2}O</td>
<td>584</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>594</td>
</tr>
<tr>
<td>a-e-2H_{2}O</td>
<td>575</td>
<td></td>
<td></td>
<td>576.1</td>
<td>576.5</td>
<td>548.1</td>
</tr>
<tr>
<td>e-b(337)</td>
<td>466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>505.3</td>
</tr>
<tr>
<td>e-c(365)</td>
<td>438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>487.2</td>
</tr>
<tr>
<td>e-c-H_{2}O</td>
<td>420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>443.3 (420+Na)</td>
</tr>
<tr>
<td>e-d(393)</td>
<td>410</td>
<td>409.3, 410.3</td>
<td>409</td>
<td></td>
<td></td>
<td>415.3 (392-Na)</td>
</tr>
<tr>
<td>e-d-H_{2}O</td>
<td>392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>387.4</td>
</tr>
<tr>
<td>e-d-CO</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>381.3</td>
</tr>
<tr>
<td>f-g(565)</td>
<td>238</td>
<td></td>
<td></td>
<td>238.9</td>
<td>238.2</td>
<td>261.2 (238-Na)</td>
</tr>
</tbody>
</table>

し、実際に LC/SIM/MS を測定し検量線を作成する。フルスキャンと比較すると LC/SIM/MS の定量限界が数百倍向上することや、妨害ピークが無いことや、ピークの定定に驚かされる。

SRM の可能性は日頃の研究の中にヒントがある。薬物動態研究での定量分析や、薬物代謝研究での構造解析で、EI/MS, CI/MS, FAB/MS の測定をする機会は必ずあり、分子イオンの他に、フラグメントイオンの有無を検討すれば良い。EI, CI, FAB のプロープは無く LC/ESI/MS か LC/APCI/MS のみの設定になっている場合でも、SRM の可能性は日頃の研究の中にヒントがある。Tube lens 電圧が 10～40 V では分子イオンのみでも、tube lens 電圧を 80～100 V にすると、MS 導入部でコリジョン

—394—
の環境になり、LC/ESI/MS か LC/APCI/MS でフスキランすると分子イオンの他にフラグメントイオンが見つかる。筆者が FK506 の代謝物研究17) で DEP/EI/MS, DEP/CI/MS, FAB/MS を測定した時、および LC/ESI/MS で Tube lens 電圧を 30 V および 80 V にしてフスキランし、FK506 の閉裂様式を検討した時のデータを Fig. 6, 7, 8 および Table 6 に示す。分子イオン m/z 803 は DEP/CI/NEG/MS で観測されただけで、(M+H)+ m/z 804 は DEP/EI/POS/MS, DEP/CI/POS/MS, (M+Na)+ m/z 826 は FAB/POS/MS, (M+Na)+ m/z 821 は LC/ESI/POS/MS, (M+AcO)+ m/z 862 は LC/ESI/NEG/MS で観測された。Tube lens 電圧を 30 V にした時、LC/ESI/POS30/MS および LC/ESI/NEG30/MS ではフラグメントイオンは観察されなかった。しかし tube lens 電圧を 80 V にした時、LC/ESI/POS80/MS でフラグメントイオンが観察された。ただし LC/ESI/NEG80/MS では付加体の酢酸分子イオンがはずれただけであった。そこで tube lens 電圧を 30 V にし、CG に Ar ガスを、CGP を 1.2 mTorr, CE を 30 V にして LC/ESI/POS/MS/MS を測定した。m/z 576, 756, 768 のフラグメントイオンは LC/ESI/POS86/MS, DEP/EI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS, DEP/CI/POS/MS を測定すると、m/z 576 のフラグメントイオンは観測されず m/z 768 に効率良く開裂した。この SRM 条件で定量分析することにした。このように LC/ESI/MS/MS をどのような条件で測定したら良いのヒントは、過去に測定したデータに存在する。

LC/SRM/MS の特徴は、Q1 と Q3 の開閉で特異性を上げることによって、ノイズを減少し定量限界を下げるこつは、フラグメントイオン量/親イオン量の効率を上げるようにする。標準溶液をインジェクションポンプで流速 4 µl/min でスプレーし、Q1 は被験物質の NH3 付加体の m/z に設定し、Q2 のコリジョンガス（アルゴン）圧を 2 mTorr, コリジョンエネルギーを -30 eV, Q3 はフスキランで被験物質のフラグメントイオンの有無を確認する。次に Q1 を親イオン、Q3 をイオン強度の強いフラグメントで MS/MS を測定する。もちろん Q2 のコリジョンガス（アルゴン）圧を 0.1 mTorr から除々に 3 mTorr まで上げて衝突の確率を変えたり、コリジョンエネルギーを -10 eV から -50 eV まで変える。そうして MS/MS の感度を上げるためフラグメントイオン量/親イオン量の効率を上げるようにする。最適条件をメモしておき LC/SRM/MS のプログラムをつくる。実際に LC/SRM/MS 法で測定し検量線を作成する。LC/SIM/MS 法での定量限界と比較して感度が上がっていれば LC/SRM/MS 法を採用する。

4.9) 高感度定量法

<table>
<thead>
<tr>
<th>高感度定量法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 抽出、注入効率を上げる</td>
</tr>
<tr>
<td>(B) HPLC カラムの選択と移動相の選択</td>
</tr>
<tr>
<td>(C) イオン化効率を上げる</td>
</tr>
<tr>
<td>(D) 噴霧の安定化</td>
</tr>
<tr>
<td>(E) ノイズレベルの減少</td>
</tr>
<tr>
<td>(F) SIM 法の採用</td>
</tr>
<tr>
<td>(G) SRM 法の採用</td>
</tr>
<tr>
<td>(H) 定量用 MS 測定テクニック</td>
</tr>
</tbody>
</table>

高感度定量法での必要条件は、すでに述べたすべての条件を満たすことによって確立された。最後に定量用 MS 測定のテクニックについて述べ、原子量は自然存在比で酸素 16 を基準にするのと、同位
体炭素 12 を基準にするのあり、MS では後者を採用している。分子にハロゲン元素を含んでいると同位体の存在パターンがフラグメントの帰属に役立つ。この同位体のピークはごく近辺に存在し、分解能を低くすると一つのピークになる。この分解能を低下するテクニックは、同位体を分離することなく自然存在比の物質にする妥当なテクニックである。ただし不純物とか内部標準の安定同位体標識体を巻き込むおそれがあるので注意を要す。Q1 よりも Q3 の分解能を下げるため、Q1 よりも Q3 の電圧を上げることを TUNE 画面で操作する。この時ピークがブロードになるので、セントロイドのウィンドーを広げることと、スレショールドの切り方を低くすることも併せて実施しないと効果がない。

—396—
Table 7. Repeatability and Trueness of FK506 Assay in Human Blood

<table>
<thead>
<tr>
<th>Concentration spiked (pg/ml)</th>
<th>Mean concentration found (pg/ml)</th>
<th>SD</th>
<th>Repeatability (%)</th>
<th>n</th>
<th>Trueness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.6</td>
<td>22.5</td>
<td>0.0021</td>
<td>9.5</td>
<td>5</td>
<td>-8.5</td>
</tr>
<tr>
<td>74</td>
<td>74.9</td>
<td>0.0020</td>
<td>2.6</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>2,460</td>
<td>2300</td>
<td>0.28</td>
<td>12.3</td>
<td>5</td>
<td>-6.5</td>
</tr>
<tr>
<td>74,000</td>
<td>71,300</td>
<td>6.1</td>
<td>8.6</td>
<td>5</td>
<td>-3.6</td>
</tr>
</tbody>
</table>

Table 8. Inter-Precision and Trueness of FK506 Assay in Blood on 5 Days

<table>
<thead>
<tr>
<th>Concentration spiked (ng/ml)</th>
<th>Mean concentration found (ng/ml)</th>
<th>SD</th>
<th>Inter-precision (%)</th>
<th>n</th>
<th>Inter-trueness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.74</td>
<td>0.737</td>
<td>0.057</td>
<td>7.7</td>
<td>5</td>
<td>-0.4</td>
</tr>
<tr>
<td>7.4</td>
<td>7.25</td>
<td>0.58</td>
<td>8.0</td>
<td>5</td>
<td>-2.0</td>
</tr>
<tr>
<td>74</td>
<td>73.9</td>
<td>1.4</td>
<td>1.8</td>
<td>5</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Table 9. Concentration of FK506 Quantitated by LC/MS with Five Analyses Mode on TSQ

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Column</th>
<th>Flow rate</th>
<th>Mobile phase</th>
<th>Monitor ion</th>
<th>Quantitation range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finnigan MAT TSQ 7000</td>
<td>Vydac C4</td>
<td>50 µl/min</td>
<td>A: 2.5 mM</td>
<td>m/z 821.6-768.4</td>
<td>98 fg-50 pg</td>
</tr>
<tr>
<td>LC/ESI/MS/MS</td>
<td>µCapillary c-18</td>
<td>4 µl/min</td>
<td>AcONH₄</td>
<td>m/z 821.5</td>
<td>3.3-1,000 pg</td>
</tr>
<tr>
<td>Finnigan MAT TSQ7000</td>
<td>Capcell pak phenyl</td>
<td>200 µl/min</td>
<td>B: 95% MeCN/ 50 pg-50 ng</td>
<td>m/z 821.5</td>
<td>50 pg-50 ng</td>
</tr>
<tr>
<td>LC/ESI/SIM/MS</td>
<td>2×150 mm</td>
<td>200 µl/min</td>
<td>0.5% AcOH</td>
<td>m/z 804</td>
<td>1-500 ng</td>
</tr>
<tr>
<td>Finnigan MAT TSQ7000</td>
<td>ODS c-18</td>
<td>400 µl/min</td>
<td>A: 5% MeCN/ 500 pg-100 ng</td>
<td>m/z 803.85</td>
<td></td>
</tr>
<tr>
<td>LC/API/SIM/MS</td>
<td>Inertsil ODS 2</td>
<td>2.1×150 mm</td>
<td>AcONH₄/5% MeCN</td>
<td>m/z 821.5</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard HP5989B</td>
<td></td>
<td></td>
<td>AcOH/5% MeCN</td>
<td>m/z 821.5</td>
<td></td>
</tr>
<tr>
<td>LC/FBI/NCI/SIM/MS</td>
<td></td>
<td></td>
<td>MeOH</td>
<td>m/z 821.5</td>
<td></td>
</tr>
</tbody>
</table>

LC/ESI/SIM/MS によるヒト全血中FK506濃度の定量法で、Q1でFK506のアンモニウム付加体のm/z 821.5を捕まったクロマトグラム（Fig. 9）は、特異性に優れた煩雑ビーグは認められず、説明精度および真度（Table 7）、および5日間の室内再現精度および真度（Table 8）は15%以下であった。検出器も25 pg/mlから74 ng/mlまでの範囲で相関係数0.999以上の直線性を示した。

LC/MS/MSでFK506を定量した結果をTable 9に示す。Q1でFK506のアンモニウム付加体のm/z 821.5を捕らえ、Q2でArガス圧を2mTorr、コリジョンエネルギーを-20 eVにして、生成するm/z 768のプロダクトイオンをQ3で測定した。各検出帯域率は絶対注入量で数百countyの超微量まで定量

---397---
Table 10. Concentration of FK506 Quantitated by LC/ESI/MS/MS Analyses on Three Kinds of Instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Finnigan MAT TSQ7000</th>
<th>VG/Fisons Quatro 3</th>
<th>Sciex/Perkin Elmer API III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>Vydac C1 1 × 50 mm</td>
<td>DEVELOSIL 300C4-HG-5 1 × 150 mm</td>
<td>Capcell pack UG-120 1 × 30 mm</td>
</tr>
<tr>
<td>Mobile phase</td>
<td>A: 2.5 mm AcONH₄</td>
<td>5 mm AcONH₄, iPA/MeCN 1:1 A:B = 4:6</td>
<td>20:30:50 25% b-95% b/7 min</td>
</tr>
<tr>
<td>Flow rate</td>
<td>50 µl/min</td>
<td>80 µl/min</td>
<td>40 µl/min</td>
</tr>
<tr>
<td>Monitor ion Q₁-Q₃</td>
<td>m/z 821.6-768.4</td>
<td>m/z 821.5-768.5</td>
<td>m/z 821.6-768.0</td>
</tr>
<tr>
<td>Collision gas</td>
<td>Ar 2 mTorr - 20 eV</td>
<td>Ar 2 mTorr - 20 eV</td>
<td>Ar 2 mTorr - 20 eV</td>
</tr>
<tr>
<td>Quantitation range</td>
<td>97 fg-50 pg</td>
<td>125 fg-50 pg</td>
<td>781 fg-12.5 pg</td>
</tr>
</tbody>
</table>

できた。直線性の良い検量線を得た。FK506の分子量を考慮すると、fmolオーダーまで測定できたことになる。

最後にESI, API, TSI, およびPBIでのFK506の定量限界の比較をTable 10に示す。LC/ESI/MS/MSでは98 fg, LC/ESI/SIM/MSでは3.3 pg, LC/API/SIM/MSでは50 pg, LC/TSI/SIM/MSでは1 ng, LC/PBI/SIM/MSでは500 pgであった。この結果は現時点のLC/MSの感度を反映している。

文 献

4) 戸塚善三郎, “バイオロジカルマススペクトロメトリー” (東京化学同人, 東京), 印刷中.
Know-How of the High Sensitivity Quantitative Analysis of Drugs by LC/API/MS

Keywords
Electrospray mass spectrometry
Quantitative analysis
FK506
LC/API/MS
LC/APCI/MS
LC/ESI/MS
LC/ESI/SRM/MS
LC/ESI/SIM/MS

---399---