製薬業界でのMS分析と精度管理

Quality Control of Analytical Method by Mass Spectrometry

戸塚善三郎*
Zenzaburo Tozuka

(Received September 16, 1999; Accepted February 2, 2000)

The quality control of the data and instruments on the analysis of drugs by mass spectrometry should be controlled by analytical section of pharmaceutical company. ICII, FDA, EMEA, and Ministry of Health and Welfare guidelines related the criteria of quality control of analytical method have been published. The purity and stability of the drugs are analyzed according to Validation of Analytical Procedures (ICII, 1994.10). The clinical pharmacokinetics samples are analyzed according to Guidance for Industry; Bioanalytical Methods Validation or Human Studies (FDA, 1998.12). Toxicokinetics samples are analyzed according to Validation of Analytical Procedures for Toxicokinetics (Japan Pharmaceutical Manufacturers Association (JPMMA), 1997.3). In this report, I write the actual quality control of analytical instrument and procedure by mass spectrometry in the pharmaceutical companies and compare the above described guideline.

1. MS分析と精度管理 (1) MS分析装置のバリデーション

MS分析と精度管理はずみ分析装置のバリデーションが必要である。

- MS分析装置の保守・定期点検、精度管理チューニング試料の感度（絶対強度）・分離能
- 分析装置の測定回数・毎日の精度管理検査線
- IS・QC試料の絶対強度・分離能
- MSをできるだけ汚さない
前処理での工夫
Valveの切り替えで必要なフラクションを測定
MSを使い分ける
- MS分析装置のSOP

1.1 MS分析装置の保守

MS分析装置の保守・定期点検、精度管理はMS分析装置の保守で必要である。MS装置は試料イオンが直接装置内に導入されシステムを汚染するため、定期的にMS分析装置の部品を解体して掃除をし、チューニングをしなければならない。E1/MS、GC/CI/MS、SIMS/MS、FAB/MS、MALDE/MS、LC/ESI/MS（Fig. 1）のイオン化装置は変わるだろう。セクター型MS、Qポール型MS、TOF型MS、FT型MSの分析装置は変わるとも、MS装置の試料イオンが直接装置内に導入されシステムを汚染する。LC/ESI/MSの場合、LCからの溶出波はノルムからシースガスで噴霧され、霧状の細かい液滴になり、ノズルと電極間の4.5 kVの高電圧によりイオン化する。真空系ではほとんどの溶媒分子は転化しロータリーポンプに導かれる。溶媒分子はイオン化し、電位差をつけたレンズ系でMS内部に導かれる。しかし凝縮した溶媒分子、制御できなかった溶媒分子がインターフェイス、特にヒーテッドキャビラリーおよびスクリーニーを汚染する。時にはQポールも汚染するが、これらの部分の掃除についてはすでに報告している。

1.2 MS分析装置の定期点検、測定時点検、精度管理

MS分析装置の定期点検、精度管理は必要である。要約および定期的にMSを掃除した後、チューニングする。標準物質溶液の絶対強度で感度を、またビーグの保持時間・ピーク形で分離能をチェックする。チューニングデータをファイリングして購入時の感度、分離能が維持できているか調べ、マルチプラライは少しずつ劣化していいくので大きなタイムスパンで調べる（Fig. 2）。

MS分析装置の測定時点検・毎日の精度管理を検査線…
IS・QC試料の絶対強度で感度を、またピークの保持時間・ピーク形で分離能をチェックする。試験試料の測定期間中に少量ずつ感度が低下する場合がある。定量法をつくるとき、定量限界のS/N比を少し大きめの10に設定し、試験試料の測定期間中に、定量限界の試料を測定できている間は、測定値を有効とする。時々起こる現象で、検量線・IS・QC試料の絶対強度・分離能が大きく変化したときはトラブルがあると判断し、試料由来か、装置由来か、操作由来かを判定し対処する。一部の試料のみ異常値の場合、試料由来が考えられ再測定する。LC/ESI/MS測定でノイズが大きくなったりしていればキャビラリーの切り口のコーティングがうまくされて日時を含むがの現象がでている場合があるので専用のクリスタルカッターでキャビラリーを切って様子をみる。オートサンプラー由来の場合もある、ある試料だけ内部標準物が低い場合は添加操作か抽出作業でのミスと考えられるので再測定する。

1.3 MSを洗浄しない工夫

MSで定量する場合、重要なことはMSをできるだけ汚さないことだと思う。それには1) 前処理で工夫する。2) バルブの切り替えに必要なフラクションの測定をする。3) MSを使い分解する。定量で前処理は重要な役割を果たしている。前処理の役割は、1) 分析物の試料中濃度の定量性を保つために内部標準を用いる。前処理作業で酸・塩基性の被検物質の液液抽出ではpHを変えて洗浄・抽出、抽出・転溶の2段階精製。中性の被検物質では液液抽出・固相抽出の2段階精製が有効である。2) 濃縮。希釈・マトリックスの選択で感度をあげる。4) 適切な時間・施設・測定者・機器を選択して測定するには、安定性・日変動・日変動・精度・正確さのパラメータ測定が必要である。初期のLC/MSではなかったが最近のLC/MSではバルブの切り替えに必要なフラクションのみを選定し、不必要なフラクションはMSに導入しないようにする。バックグランドが低くクロマトグラムがきれいになるばかりでなく、機器の寿命が長くなる。当社の薬物分析研究室では現在9台のMSを探索代謝用（LCQ 1台）、探索定量用（API 2000 2台）、開発代謝用（TSQ 7000 1台、API 3651 1台）、臨床用（TSQ 7000 2台、API 3000 1台）、GC/MS（SSQ 7000 1台）に使い分れている。医薬品開発研究段階でMS分析のニーズがスピード、量、感度、分解能に関して異なるのでMSを使い分ける。

1.4 MS分析装置のSOP

当社のMS装置のSOPは、1985年頃からGLP対策の一環として試験計画書や機器のSOPをつくり始めたときに出来上がったが、1995年からtoxicokineticsが本格化し、1997年に改定したSOPが現在有効になっている。各機器ごとに機種、概要、操作、点検、修理、保守について記載している。点検は隔年で5年以内に行い、修理の記録は保管フィーリングしている。掃除およびチューニング

—135—
は平均3ヶ月ごとに実施し、汚れたときはもっと短い期間で実施している。掃除およびチューニングの記録およびデータもファイリングしている。LC/MSが廃棄していることはなく、定期点検および測定点検でMS分析の精度管理はなされている。

2. MS分析と精度管理 (2) MSによる定量法のバリデーション

MS分析と精度管理はMSによる定量法のバリデーションが必要である。

・医薬品開発段階とMSによる定量分析
・医薬品の品質保証(GMP)での分析とICHガイドライン
・Toxicokinetics(GLP)での分析と製薬業界ガイドライン
・Clinical Pharmacokinetics(GCP)での分析とFDAガイドライン
・3ガイドラインでの分析基準の比較

2.1 医薬品開発段階とMS定量分析

医薬品研究では大きく変動している。スクリーニングに薬理、毒性だけでなく、薬物動態、物性を組み込んだ総合評価システムを構築している(Fig.3)。In vitro試験で安価でスピーディな評価法が利用されるため、初期段階から容易に組み込むべきである。薬理でのリセプター・アセサリ、薬物動態でのin vitro代謝、Caco-2吸収評価は96ウェルの迅速スクリーニングで実施されている。この評価分析にMSは必須である。さらにヒト遺伝子の解析が進み、mRNA・タンパク質の研究プログラマが新しくリセプター・リガンドが見つかり、医薬品の研究スケールが大きく変わってき、この分野では微量のmRNA・タンパク質をMSで分析する。製薬業界でMS分析はますます増えていく傾向にある。製薬業界でのMS分析は医薬品の研究でのフェーズに応じて用途が異なる。スクリーニングを必要とする薬剤研究での薬物のスクリーニング、特にCC-HTSでMS/MSによる微量スクリーニングが有効である。MS分析は特異性に優れた検出器で、バックグラウンドの妨害ピークに悩まされずに簡単で定量法が確立できるため、探索代謝・探索定量のスクリーニングが求められる簡単な定量法の確立にLC/MSが使われているのがオリオナルでフル稼働するので夜間シーケンスを昼間シーケンスの2系列でプログラムで組んで分析する。

一方、薬物開発研究でも大きな変動がみられる。欧米の薬品開発をみると、「ヒトのための薬品開発」という思想がはっきりしており、必要最低限度の前臨床試験データでヒト試験を早急に実施し、ヒトでの有効性を確認する方式が採用されている。日本のメーカーでもこの方式を採用して海外でヒト試験を実施している。米国はphase IにIND登録が必要であるが、ヨーロッパではphase IIbCTX登録が必要であるが、前臨床期間を短くして早発開発するにあたって決まった方式が考えられる。最近リセプター・アセサリの研究をリセプター・リガンド間の親和性は著しく、従来の薬剤よりも有効投与量が少なくなる傾向がみられ、そのため血薬濃度は低く、従来の分析法の定量度では測定できなくなり、高感度のMS分析による定量分析が増加している。特にヒトと有機で安全な薬剤であることを証明するための臨床試験でのMS分析が増えていく。ヒトでの活性性を調べるP1試験、ヒトでの有効性を調べる臨床薬理試験での血中濃度を測定するのにMS定量分析が増加している(Table 1)。イオン化法はLC/ESI/MS法が最も多く主流となっている。SIMもあるがSRMが主流になっている。MS/MSはバックのノイズが低くpg/mLのピークをS/N比が10で測定するには必要条件である。ヒトでの代謝物の同時定量もMSで分析されている。エンザイムイムノアッセイはどうしても特異性がなく代謝物との交差反応があり、測定値は薬理活性とその相関性がとれない場合がしばしばあり、長期試験での抗体の変化による定量限界の問題もあり、MS分析に変わる必要がある。

MS定量分析法の確立、測定、精度管理は製薬メーカーの実施部門で自立できることが重要である。Table 1に記載されている薬剤のMS定量分析法のバリデーションをTable 2に示す。当然MS分析では特異性は良い。精度、真度はばらつきも15%以内に収まると、感度、定量幅も良好である。検量線の直線性は少し問題があり、2本の検量線を使う場合もある。これは重りをつけることを推奨する。100～1000の定量値の場合、検量線の直線性が信頼性が高く、y軸の重りをつけた高濃度の信頼性を高めるほうが当然重要である。薬品の品質保証や、無毒性と有効性の安全域を決定する薬剤などの重要なMS分析データは、製薬メーカーの信頼性保証部門の精度保証が必要である。精度管理および精度保証の基準は厚生省(日本)、FDA(米国)、EMEA & CPhMP (EU)およびICHのガイドラインに記載されている。我々はこれらのルールを遵守し、MS分析を実施しなければならない。新薬の製造承認申請書添付資料データに関しては同局查察官の査察を受ける。

GLPで実施される薬物の品質保証試験や、GLPで実施
Quality Control of Analytical Method by Mass Spectrometry

Table 1. The High Sensitive Quantitative Analysis of Drugs by LC/MS

<table>
<thead>
<tr>
<th>薬物名</th>
<th>症状</th>
<th>イオン化</th>
<th>モード</th>
<th>定量限界</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK506</td>
<td>免疫抑制</td>
<td>ESI</td>
<td>SIM</td>
<td>25 pg/mL</td>
</tr>
<tr>
<td>FK506</td>
<td>免疫抑制</td>
<td>ESI</td>
<td>SRM</td>
<td>98 pg/mL</td>
</tr>
<tr>
<td>IRI-514</td>
<td>ベプラノド</td>
<td>ESI</td>
<td>SIM</td>
<td>1 ng/mL</td>
</tr>
<tr>
<td>SQ33,600</td>
<td>HMG-CoA R 阻害</td>
<td>ESI</td>
<td>SIM</td>
<td>10 ng/mL</td>
</tr>
<tr>
<td>アンビシリン</td>
<td>ペニシリン</td>
<td>ESI</td>
<td>MC</td>
<td>10 ppb</td>
</tr>
<tr>
<td>アニラルニチン</td>
<td>β 代謝制</td>
<td>ESI</td>
<td>MC</td>
<td>100 fmol</td>
</tr>
<tr>
<td>エンドルフィン</td>
<td>オピオイド</td>
<td>ESI</td>
<td>SIM</td>
<td>5 fmol</td>
</tr>
<tr>
<td>グンタミシンC</td>
<td>アミノグリコシド</td>
<td>ESI</td>
<td>SRM</td>
<td>0.05 ppm</td>
</tr>
<tr>
<td>ザノメリリン</td>
<td>抗 MRA 剤</td>
<td>ESI</td>
<td>SRM</td>
<td>75 pg/mL</td>
</tr>
<tr>
<td>セファビリン</td>
<td>セファロスポリン</td>
<td>ESI</td>
<td>MC</td>
<td>10 ppb</td>
</tr>
<tr>
<td>バルマチン</td>
<td>アルカルビド</td>
<td>ESI</td>
<td>SIM</td>
<td>1 ng/mL</td>
</tr>
<tr>
<td>FK506</td>
<td>免疫抑制</td>
<td>APCI</td>
<td>SIM</td>
<td>50 pg</td>
</tr>
<tr>
<td>CP-50, 794</td>
<td>レニン阻害</td>
<td>APCI</td>
<td>SIM</td>
<td>50 pg/mL</td>
</tr>
<tr>
<td>L-365, 260</td>
<td>CCK-B 拮抗</td>
<td>APCI</td>
<td>SIM</td>
<td>500 pg/mL</td>
</tr>
<tr>
<td>L-564, 016</td>
<td>5AR 抑制</td>
<td>APCI</td>
<td>SRM</td>
<td>200 pg/mL</td>
</tr>
<tr>
<td>LSD 類縁物質</td>
<td>幻覚剤</td>
<td>APCI</td>
<td>SRM</td>
<td>2.5 ppt</td>
</tr>
<tr>
<td>TNF-470, AGM-1470</td>
<td>マーギリン</td>
<td>APCI</td>
<td>SIM</td>
<td>160 pg/mL</td>
</tr>
<tr>
<td>アパノクラ</td>
<td>抗炎症</td>
<td>APCI</td>
<td>SRM</td>
<td>10 pg/mL</td>
</tr>
<tr>
<td>クレプテール</td>
<td>β アゴニスト</td>
<td>APCI</td>
<td>SIM</td>
<td>2.5 ppb</td>
</tr>
<tr>
<td>サクイナピール</td>
<td>抗 HIV 効</td>
<td>APCI</td>
<td>SIM</td>
<td>400 pg/mL</td>
</tr>
<tr>
<td>ターブタリン</td>
<td>β アゴニスト</td>
<td>APCI</td>
<td>SIM</td>
<td>2.5 ppb</td>
</tr>
<tr>
<td>テニダッパ</td>
<td>抗炎症</td>
<td>APCI</td>
<td>SRM</td>
<td>100 ng/mL</td>
</tr>
<tr>
<td>フェニルプロパゾン</td>
<td>抗凝固剤</td>
<td>APCI</td>
<td>SRM</td>
<td>1 ng</td>
</tr>
<tr>
<td>ポルデノン</td>
<td>ステロイド</td>
<td>APCI</td>
<td>SRM</td>
<td>10 pg</td>
</tr>
<tr>
<td>トロンボキサン等</td>
<td>抗アレルギー</td>
<td>APCI</td>
<td>SRM</td>
<td>10 pg/mL</td>
</tr>
<tr>
<td>FK506</td>
<td>免疫抑制</td>
<td>PBI</td>
<td>SIM</td>
<td>500 pg</td>
</tr>
<tr>
<td>BN50727</td>
<td>抗 PAF 効</td>
<td>PBI</td>
<td>MC</td>
<td>1 ng/mL</td>
</tr>
<tr>
<td>FK506</td>
<td>免疫抑制</td>
<td>TSI</td>
<td>SIM</td>
<td>1 ng</td>
</tr>
<tr>
<td>SM-6586</td>
<td>Ca 抗拮</td>
<td>TSI</td>
<td>SRM</td>
<td>200 pg/mL</td>
</tr>
<tr>
<td>ベンタシモン</td>
<td>滅菌剤</td>
<td>TSI</td>
<td>SIM</td>
<td>43 pg/mL</td>
</tr>
<tr>
<td>ターブタリン</td>
<td>β アゴニスト</td>
<td>TSI</td>
<td>SIM</td>
<td>1 pmol</td>
</tr>
<tr>
<td>プロソライド</td>
<td>ステロイド</td>
<td>TSI</td>
<td>SIM</td>
<td>1.5 pmol</td>
</tr>
</tbody>
</table>

Table 2. Validation of Analytical Method of Drugs by LC/MS

<table>
<thead>
<tr>
<th>薬物名</th>
<th>特異性</th>
<th>真度</th>
<th>精密度</th>
<th>定量幅</th>
<th>直線性</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK506</td>
<td>良</td>
<td>± 8.5%</td>
<td>12.3%</td>
<td>25 pg~74 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>IRI-514</td>
<td>良</td>
<td>±15.8%</td>
<td>48.8%</td>
<td>2 ng~40 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>SQ33,600</td>
<td>良</td>
<td>± 3%</td>
<td>11.5%</td>
<td>10 ng~320 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>ザノメリリン</td>
<td>良</td>
<td>± 7.6%</td>
<td>7.9%</td>
<td>75 pg~5 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>CP-50, 794</td>
<td>良</td>
<td>±19%</td>
<td>12.5%</td>
<td>50 pg~10 ng/mL</td>
<td>不良</td>
</tr>
<tr>
<td>L-365, 260</td>
<td>良</td>
<td>±12%</td>
<td>11.5%</td>
<td>500 pg~600 ng/mL</td>
<td>不良</td>
</tr>
<tr>
<td>L-564, 016</td>
<td>良</td>
<td>± 8%</td>
<td>11.6%</td>
<td>200 pg~20 ng/mL</td>
<td>不良</td>
</tr>
<tr>
<td>TNF-470,AGM-1470</td>
<td>良</td>
<td>±17.6%</td>
<td>10.8%</td>
<td>120 pg~20 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>アパノクラ</td>
<td>良</td>
<td>±13.5%</td>
<td>7.0%</td>
<td>10 pg~500 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>サクイナピール</td>
<td>良</td>
<td>± 6.2%</td>
<td>8.3%</td>
<td>400 pg~200 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>テニダッパ</td>
<td>良</td>
<td>±13.0%</td>
<td>100 ng~25 µg/mL</td>
<td>不良</td>
<td></td>
</tr>
<tr>
<td>トロンボキサン等</td>
<td>良</td>
<td>± 6.0%</td>
<td>8.7%</td>
<td>10 pg~10 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>BN50727</td>
<td>良</td>
<td>± 7.4%</td>
<td>6.1%</td>
<td>1 ng~200 ng/mL</td>
<td>良</td>
</tr>
<tr>
<td>SM-6586</td>
<td>良</td>
<td>2.3%</td>
<td>0.2~10 ng/mL</td>
<td>良</td>
<td></td>
</tr>
<tr>
<td>ベンタシモン</td>
<td>良</td>
<td>±21.8%</td>
<td>1.04~67 ng/mL</td>
<td>良</td>
<td></td>
</tr>
</tbody>
</table>

される動物の安全性試験での toxicokinetics, GCP で実施されるヒト臨床試験での薬効量と副作用発現量の設定と血液中濃度を評価する clinical pharmacokinetics のため、MS 定量分析は精度管理のできた定量装置・分析法で実施されなければならない。

2.2 医薬品の品質保証 (GMP) での分析と ICH ガイドライン: Validation of Analytical Procedures (ICH, 1994.10)

Validation of Analytical Procedures (ICH, 1994.10) を遵守して実施している。

新薬の製造承認申請書添付資料で MS 分析と関係する項目で（1）物理化学的性質ならびに規格及び試験方法、（2）安定性に関する試験は、医薬品の製造に関する GMP
規準を遵守して実施し、それらの定量分析の基準に関するICH定量分析パリテーションのガイドライン指針を遵守して実施する。製作中の原料、合成中間体の不純物、分解物の混在による製品の純度が重視される。製品の長期使用のための安定性も重視される。したがって、この領域でのMS定量分析は特異性が重視される。微量な不純物の定量分析には高い感度が必要である。インターネットでhttp://www.ifpma.org/ich5q.htmlにアクセスすると1996年のSTEP4のICHのガイドラインがでてくる。その中にValidation of analytical methodologyがあり、その記載項目は次のとおりである。各項目の内容に関しては(5)3ガイドラインでの分析基準の比較の項で後述する。

ICH Harmonised Tripartite Guideline
Validation of Analytical Procedures: Methodology
Step4 of the ICH Process
6 November 1996

Introduction
1. Specificity (Identification, Assay and Impurity Test)
2. Linearity
3. Range
4. Accuracy (Assay, Impurities, Recommended Data)
5. Precision (Repeatability, Intermediate Precision, Reproducibility)
8. Robustness
9. System Suitability Testing

2.3 Toxicokinetics (GLP)での分析と製薬業ガイドライン：トキシコヌティックスの円滑な導入のためのGLP上の留意点および定量法のバリテーションの進め方（製薬協, 1997.3)

新薬の製造承認申請書添付資料=毒性(Toxicokinetics)、安全性実証はGLP規準を遵守して実施し、それらの定量分析の基準に関するトキシコヌティックスの円滑な導入のためのGLP上の留意点および定量法のバリテーションの進め方（製薬協, 1997.3）を遵守して実施する。

毒性試験は一般に、中、低用量で統計的に有意のある例数つまり雌雄各5例に投与され、経口投与され吸収されたことを確認するモニタリングの場合は試験の初日、中日、終了日の各Tmaxと24時間の2時点、toxicokineticsのプロファイルをみることは5、6時点で採血した試料を濃度を測定する。モニタリングの場合、検体数は180検体、toxicokineticsでは540検体になる。初日、中日、終了日の濃度が傾向を示し、かつ相関係数が率も大きい場合は発見性を伴っている。雌雄の血中濃度が異なる場合は性差があることになる。しかしラットでは一般に雄ラットの代謝活性が強く、したがって雄ラットの未変化体濃度が高い傾向がある。ラット、イヌ共に性差があるならばヒトでもありうる。ラット、イヌのPKパラメータが大きく違うならば種差がありラット、イヌ、サル、ヒトの肝ミクロソームを用いたin vitro代謝実験でCLを求めるヒトに類似した動物で毒性試験をすることになった。最近血中濃度が重視され初日。中日、終了日の血中濃度変化をすぐに要求されるので測定のスピードも重要である。毒性試験であるので投与量が多く、したがって血中濃度が高いので感度はあまり問題ではなく、精度、真度、再現性が重視されている。毒性試験施設と濃度測定施設は一般に異なるので試料中薬物の安定性も重視される。

1997年3月、トキシコヌティックスの円滑な導入のためのGLP上の留意点および定量法のバリテーションの進め方が日本製薬工業会、医薬品製造、医薬品評価委員会から発表された。そこでTK測定の実施上の留意点として、機器について基準化している。また定量法のバリテーション、機器のバリテーションについても規定している。各項目の内容に関しては(5)3ガイドラインでの分析基準の比較の項で後述する。

トキシコヌティックスの円滑な導入のためのGLP上の留意点および定量法のバリテーションの進め方
平成9年3月
日本製薬工業会 医薬品評価委員会

I. GLPにおけるTK測定の実施上の留意点
4-4. 機器
TK測定施設はTK測定を実施するのに適切かつ十分な機器を有していること、および機器は信頼できる結果が得られるように点検、保守等の管理が行われていることが必要。

1. TK測定機器はTK測定を実施するのに適切であり、十分な能力を有していること。
2. TK測定機器及び被検物質の標準品、内部標準物質及び測定試料等の保管機器は適切に配置されていること。
3. TK測定機器及び保管機器の点検、保守、校正等の管理はなされていること。
4. TK測定に使用する機器に関し、以下のSOPを作成し、記録し、保管すること。
1) 機器の標準操作手順書(SOP)と使用記録。
2) 機器の点検、保守、校正等のSOPと記録。
3) 機器の故障と修理のSOPとその記録。

トキシコヌティックスの円滑な導入のためのGLP上の留意点および定量法のバリテーションの進め方
平成9年3月
日本製薬工業会 医薬品評価委員会

II. TK測定における生体試料中薬物濃度測定に関する問題点とその対応

---138---
3. 定量法のバリデーション
(1) 特異性, (2) セレクト, (3) 検量線 (定量範囲確認), (4) 同時再現性 (日内変動), (5) 日差再現性 (日間変動), (6) 安定性

4. TK 測定試料の測定
(1) 測定, (2) 検量線, (3) QC サンプル, (4) 再測定

5. 定量法における問題点と対応策
(1) 定量法の変更,
(2) 機器のバリデーション及び点検
・販売会社等で作成しているバリデーション法を参考とし, SOP を作成し対応する。
・販売会社等と, 十分な点検項目を満たす保守点検契約等を利用する。尚, 使用時間検等は自社で行う, SOP に従い, 使用時点で検定, 定期点検, 修理点検を実施, 記録する。

2.4 Clinical Pharmacokinetics (GCP) での分析と FDA ガイドライン: Guidance for Industry, Bioanalytical Methods Validation for Human Studies (FDA, 1998.12)
新薬の製造承認申請書添付資料 [臨床試験 (Clinical Pharmacokinetics) の実施に関する基準は GCP および市販後調査で実施される臨床試験に関する基準は JGMP が厚生省薬業局長通知則に定め] にある。それらに関連する申請データに関しては同局の要覧の要覧を受ける。通達により平成 9 年から GLP 適用の Toxicokinetics 申請データおよび GCP 適用の基準は薬事監視機構で、また調査時の意見聴取は審査センターで受けることになった。定量分析の基準に関しては FDA ガイドライン: Guidance for Industry, Bioanalytical Methods Validation for Human Studies (FDA, 1998.12) を遵守して実施している。ヒト臨床試験での栖性試験 (phase I) は安全性を確保するために薬理作用発現推定の 1/60 以下の投与量から開始され、十分効果が発現され毒性が安全性が確認される血中濃度を確認する投与量まで段階的で用量設定で、統計的に有意義の認められる例数つまり各用量 6 名の健常人に成人に投与し、血中濃度のプロファイルをみるために 10 時間で採血された試料の濃度を測定する。5段階の用量ならば 300 検体である。1週間ごとに用量が上昇される場合もあり、血中濃度をすぐに要求されるので分析スピードも重要される。血中濃度が低いので相対的に重要、定量限界が重要である。医療施設で試験が実施され、定量測定は施設で実施されるので、試料中薬物の安定性が重要される。
インターネットで http://www.fda.gov にアクセスすると FDA のガイドラインが見つける。その中に Bioanalytical Method Validation for Human Study があり、その記載項目は次のとおりである。各項目的内容に関しては (5) 3 ガイドラインでの分析基準の比較の項で後述する。

Guidance for Industry
Bioanalytical Methods Validation for Human Studies
Food and Drug Administration

I. Introduction
II. Background
III. Reference Standard
IV. Pre-study Validation
A. Specificity, B. Calibration Curve, C. Preci-

Table 3. Validation of Analytical Method

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Linearity</th>
<th>LOQ</th>
<th>Range</th>
<th>Accuracy</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICH</td>
<td>10 mg</td>
<td>C ≥ 5</td>
<td>C = 5, n = 3</td>
<td>C = 3, n = 3</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Impurity test</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>FDA Criteria</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Calibration Curve</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Quality Control Sample</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>LOQQC Sample</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Seiyakukyo Criteria</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Calibration Curve</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Quality Control Sample</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Different laboratories</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Different species</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
<tr>
<td>Different matrix</td>
<td>CE ≥ 5</td>
<td>C = 5</td>
<td>C = 5</td>
<td>C = 5, n = 5</td>
<td>C = 3, n = 5</td>
</tr>
</tbody>
</table>

C. concentration; n, number; •, necessary; △, case by case necessary.
ICH規格では検出限界DL=3.3σS（σはプランク値の標準偏差，SD，検量線のγ切片またはDL値のSD，Sは検量線の傾き），定量限界LOQ=10σSを設定しているが，FDAのLOQ規格はシグマレベル0.5とノイズレベルの倍，S/N≥5であること，LOQ値のAccuracy，Precision≤20%を目標としている（製薬業者も同様）．LOQを超える濃度では，FDA規格はC≥3，n≥5（3濃度，5検体以上）の試料でAccuracy，Precision≤15%（製薬業者も同様）である。

生体試料中濃度を定量するFDA規格と製薬業者規格は既に公開された生体試料を含む試料を有するQCサンプルの検討が必要である．これらは検量線サンプルとは別個に作製されているものである．FDA規格はH，M，Lの3CでLは3×LOQ，Hは75～90%HLOQ，Mは中間濃度である．

生体試料からの回収率をFDAは最低50～60%としている．

生体試料中の安定性も必要でFDAでは2C，n3（2濃度，3検体）の試料で-20℃の凍結・解凍3サイクルでの安定性2C，n3の試料で4～24時間室温での安定性2C，n3の試料で-20℃（必要なら-70℃）で試験開始から保存での安定性を必要としている．

MS精度管理は製薬業者およびCROはどのように実際に行っているか，アンケート調査をして検討しているが，海外のCRO（Phenix，Covance，SDHariss，HIS）は，MS分析のバリデーションはFDAの規格はクリアしていると返答してきた．当社のMS分析のバリデーションもFDAの規格はクリアしている．当社の定量法バリデーションのSOPは特異性検量線は5～8濃度，定量幅は100～1,000, ISを用いる．実験条件，データ収集，内変動，外変動，精度と信頼性，回収率，安定性について規定している．

Keywords: Quality control, Analytical method, Mass spectrometry, Guidelines