サリン事件と質量分析

The Sarin Incidents in Japan and Mass Spectrometry

角 田 紀 子
Noriko TSUNODA

(REceived February 14, 2005; Accepted March 10, 2005)

2004 was the 10th anniversary of the Matsumoto sarin incident, and 2005 is the 10th anniversary of the Tokyo Subway Attack. National Research Institute of Police Science has been engaged in forensic examinations into these incidents. Chemical analyses of the victim’s blood, water, soil, and wipe samples were performed by organic solvent extraction, followed by gas chromatography-mass spectrometry with or without tert-butyl-dimethylsililation. As a result, sarin and its hydrolysis products (isopropylmethyl phosphonate and methylphosphonate), derived from sarin were positively identified by their mass spectra and retention indices. Furthermore, from the chemical analysis of evidence samples taken from the scene of manufacturing plant, precursors, and byproducts corresponding to synthetic routes of sarin has been identified. This paper presents characteristics of nerve agents, sample preparation of sarin, optimization of GC-MS, and case reports from a standpoint of effectiveness of GC-MS.

1. 緒 言

1994年6月27日松本市内で発生した松本サリン事件から10年が経過し、2005年は東京地下鉄サリン事件から満10年である。事件当時、科学警察研究所化学第二研究室長の職にあった筆者は、松本サリン事件においては発生の翌日、東京地下鉄サリン事件においては発生1時間後に事件現場に臨場した。さらに、山梨県上九条村のオム施設への捜査にも同行した。これらの事業はサリン、VXなどを使用した一連の事案であったが、これらの事件にかかるおおたる数の多種多様な資料について鑑定検査を行った。さらに、サリン関連事件の公判のいくつかの裁判では証人出廷し、鑑定にかかる証言を行った。

本事案は不特定多数の一般市民に対して、化学兵器の一種である神経剤サリンなどが使われ、最終的にはサリンによる死者19名、VXによる死者1名、5,000名を超えるサリン中毒者を数える世界に類のない未発表の集団中毒事件となった。WHOにより筆者の提供資料を元にして事件の概要が最近まとめられている1)。分析法についてもすでにアメリカ化学会で発表した内容が、ACS Symposium Seriesとして刊行されている2)。

安達らも本誌で法化学的な薬物分析法の特徴や困難さを指摘しているが3)、4)、毒物事件の多くは使用毒物が不明で試料の履歴も不明な未知な試料（unknown sample）であることを前提とする。中毒事案においては、毒物を特定する定性分析のみならず、中毒あるいは大規模なため定量分析も要求される。また、毒物事案では救命救急医療機関への的確な情報を提供の面からも、中毒原因物質の同定は迅速かつ正確さが要求される。

また、その鑑定結果は裁判という公の場で審理されるものであり、信頼性の高い各種公定法やそれらと同等の分析法（例えば日本薬学会編「薬物分析試験法と注解」5)が望まれる。また、Scientific Working Group for the Analysis of Seized Drugs（SWGDRUG）6)が推奨するように、分析法は少なくとも二つ以上の原理の異なる方法で行うことを原則とする。近年は、1回の分析でクロマトグラフィーと化学構造情報が得られるガスクロマトグラフィー質量分析（GC-MS）や液クロマトグラフィー質量分析（LC-MS）などのハイパーテクニックが活用されている。さらに標準品との比較対照により最終的な確認・同定を行うこととしている。

化学兵器の神経剤サリンが人類史上初めて犯罪（テロ）目的に使われた松本サリン事件では、事件発生当初全く毒物は想定できず、一時的に毒物の同定は困難であった。しかし、被害者の頭髪と血液（特に赤血球）のコリンエステラーゼ（ChE）酵素活性の顕著な阻害があること、事件現場付近の小動物の死体や植物の褐色・枯死などからは、神経剤も含めた有機リン系化合物などのChE阻害剤の存在が強く疑われた。そこで、ジクロロメタン抽出物についてGC-MSによる毒物一斉スクリーニングを行い、NISTのMSデータベース検索でサリンおよびdiisopropyl methylphosphonate（DIMP）の存在が示唆された。また、サリン分解物isopropylmethylphosphonate（IMPA）及びmethylphosphonate（MPA）も検出され、毒物がサリンで
あることを強力に支持する結果が得られた。当時はサリン標準品を有していなかったため、複数機種のGC-MSとリン選択的検出器付GC（GC-NPD, GC-AED）の結果を総合し、サリンと同定した。

東京地下鉄サリン事件においては、松本サリン事件の鑑定で確立した分析法を適用し迅速に毒物はサリンと同定された。さらに、上九一色村のサティアン周辺の土砂、ふき取り資料、サリン合成プラントの鑑定では、合成原料、前駆物質、合成中間体を含めた関連化合物も確認・同定された。また、VX使用を疑われた遺品においてもVX加水分解物などがGC-MSで同定され、改めてGC-MSの威力を認識させられた。

我が国では1997年に「化学兵器の禁止及び特定物質の規制等に関する法律（化学兵器禁止法）」が施行され、化学剤の製造・所持・使用に伴う規制が更に強化された。筆者らの機関では、2001年以降はオランダTNOより化学兵器用剤（以下化学剤と呼ぶ）の標準品を正規購入し、改めてサリンはじめ各種化学剤の鑑定検査の詳細な検討を加え、定量的な鑑定検査の開発研究を行い、より精巧な鑑定法を確立している。その成果を含め、進歩総説をまとめている。

サリン事件から10年という節目に当たり、1994年当時筆者らが行ったサリン事件の鑑定検査において、質量分析（特にGC-MS）が鑑定で果たした有効性について紹介する。

2. 神経剤の種類と性状

化学剤の性物・化学的性状、毒性・中毒症状に関して、StewartとSullivanの単行本をはじめ、総説や成書は事件当時から多数あり、その後も次々と刊行されている。最近、我が国でも生物・化学剤の性状・毒性・分析のハンディブックまたは求められる。化学剤は、生命過程に対する化学作用を通じて人間や動物を死に至らしめたり、行動を一時的に奪ったり、長期間に傷害を与える化学物質であり、作用によって神経剤、びらん剤、窒息剤、血液剤、くしゃみ剤、催吐剤などに分類される。化学剤は種類によって、毒性作用の種類や強さ、発現時間などもさることながら、ガス状から固体まで物性はさまざまである。一般的には不安定であり、水中で分解しやすく、毒性作用を失ってしまう。

有機リン化合物である神経剤は、常温では液体で猛毒性であり、致死量（LD₅₀）はいずれも0.1 mg/kgのオーダーであるとされる。その毒性発現機構は、有機リン系殺虫剤と同様にAChEの不可逆的な阻害によるものである。治療法としては、オキシソム（例えば2-PAM）、アドブリンおよびジアゼラムの併用が有効との報告がなされている。神経剤は強酸性およびアルカリ性で容易に加水分解を受け、水溶性のalkyl methylphosphonate (RMPA) となり、さらに安定なmethylphosphonate (MPA) となる。法化学的および化学検査において、神経剤の製造、保存あるいは使用を証明するためには、神経剤自身あるいは分解物を検出することが不可欠である。VXの一部の分解物は毒性を示すが、ほとんどの神経剤分解物の毒性は極めて弱いと考えられている。サリン（GB）、ツマン（GD）、タブン（GA）およびVXの加水分解反応をFig.1に示す。

3. 神経薬の分析法

化学剤の分析法に関して、1994年当時における化学薬に伴う国内の推奨方法、例えばWitkowski et al.の総説、および多くの文献がすでにあり、筆者らは1995年当時の神経剤分析法に関する総説をまとめている。筆者らも化学剤のGC-MS条件の最適化を参考とした。神経剤加水分解物の分析には、筆者が神経剤と類似したP-C結合をも含むリン酸系除草剤類（クリソホルン、ピアラホルム、ピアラホルムの分解物）のガスクロマトグラフィー質量分析（GC-MS）法としてすでに確立していった誘導体化法を適用することによりサリン分解物の検出、同定がなされた。

分析に当たり、サリンおよびVXの加水分解物、合成中間体、副生成物のうち、市販品および市販されていないものは別途合成したものを対照標準品とし、確認・同定に供した。

3.1 試料の調製

鑑定資料は、現場由来の環境試料とヒト由来の生体試料がある。いずれも重量、汚染、分解、変質、腐敗、マトリックス、2度と同じ試料が得られないという希少性（試料量は有限）など鑑定資料特有の制約がある。生体試料では代謝物も分析対象である。高感度なGC-MSを行う際には、各試料それぞれのマトリックス由来の物質から目的物質分離精製する前処理方法に試料調製が不可欠である。

神経剤の液-液抽出ソルトとして、n-ヘキサンとジクロロジペンタンが一般に用いられている。D’AgostinoとProvostは土砂試料に対する抽出率を検討し、サリンなどの神経剤にはジクロロジペンタンが、極性の高いびらん剤のマスタードにはn-ヘキサンがより適していることを明らかにした。TornesらはC18、NH₂カルトリッジによる固相抽出の検討において、化学剤の種類により回収率は著しくあると報告している。Singhらは、添加した神経剤が血液中から急速に検出されなくなったと報告しているが、
生体試料からの神経剤または加水分解物を検出するための
試料調製法の検討はほとんどされていなかった。

本事案の鑑定資料は、被害者由来の体液（血液, 尿, 鼻
汁, 唾液）, 腎器組織, サリン付着由来物（髪, 体表面, 着
衣）, 事件現場から採取された水・土砂・植物・ぶき取り
資料などの環境試料, さらにサリン合成プランクトと想定さ
れるサティアン内の反応釜, パイプ, パッキングなど反応
装置由来の粉末, 固体, 液体（水溶液, 油状物）やぶき取
り資料など多種多様多数であった。ぶき取り資料の採取は,
毒物の分解・変質を避けるために, ドライアイス製紙や
キミワイブなどでぶき取ることとした。後に毒物がサリン
と特定され, 採取法が適切であったことが判明し, 安堵し
た。

サリンのヒトに対する吸入半数致死暴露量 (LC50) は
100 mg/m3・min とされており, ばらつきが中毒症状を呈
すると思われる。したがって中毒者のサリンの血中濃度は
GC-MS の検出レベル以下と想定されるが, サリンは血液
中の ChE と即座に结合し, 運解しないことなどから,
GC-MS 分析では中毒者および中毒者の血液からサリ
ンの検出は困難ながらサリンの加水分解物が検出される可
能性はあると考えられた。尿・鼻汁・唾液試料も血と同
様な結果が予測された。しかし, サリン中毒の症状の一
として, 鼻汁や唾液が増加するので, 中毒者体外に
流出した鼻汁などに大気中のサリンが付着すればサリンが
検出される可能性も考えられた。

そこで, サリンの加水分解を考慮し, 水溶液試料の pH
を弱酸性から中性領域に調整しジクロロメタン抽出を行い,
ジクロロメタン可溶部と水溶部に分画した。有機層は
濃縮後直接サリンおよびその関連化合物分析に用い, 水溶部
の加水分解物は Tsunoda の既報13)に従い水溶部の一部
を濃縮乾固し N-methyl N-(tert-butyl dimethylsilyl) tri-
fluoracetamide (MTBSTFA) 50 μL とアセトニトリル
50 μL を加え, 密栓し 5 分間超音波処理した後, 60℃で 1
時間加温し, tert-butyl dimethylsilyl (t-BDMS) 調導体
化した後に GC-MS に供した。

神経剤の生体試料からの分析に関する報告はほとんど見
当たらなかった。筆者らは血液試料について, ダンバク
処理後に得られる水層部の pH を酸性側に維持する目的
で, ダンバク剤として過塩酸素を用いることとした。す
なわち, 血液試料に 4 容の 5%過塩酸素水溶液を加えて除

Fig. 2. Sample preparation.

Table 1. Retention Indices of Nerve Agents and Sarin Related Compounds16)

<table>
<thead>
<tr>
<th>Compound</th>
<th>DB-1</th>
<th>DB-5</th>
<th>SE-5416)</th>
<th>DB-1701</th>
<th>DB-WAX</th>
<th>DB-516)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarin</td>
<td>789</td>
<td>817</td>
<td>824</td>
<td>954</td>
<td>1297</td>
<td>817</td>
</tr>
<tr>
<td>Soman</td>
<td>1012</td>
<td>1038</td>
<td>1043</td>
<td>1179</td>
<td>1478</td>
<td></td>
</tr>
<tr>
<td>VX</td>
<td>1131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMP</td>
<td></td>
<td>1704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1059</td>
</tr>
<tr>
<td>IMPA-tBDMS</td>
<td></td>
<td>1321</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPA-tBDMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1580</td>
</tr>
</tbody>
</table>

16) Observed by authors.
スライ分離するGC条件を検討し、微粒容のJ&W社製DB-5MS（0.25mm i.d.×30m, 0.25mm膜厚）、キャリャーガスHe1mL/min。カラム温度は45℃（2min）→125℃（8℃/min）、125〜280℃（15℃/min）の温度変化を設定した。なお、サンリン加水分解物IMPA、MAPのt-BDMS誘導体も本GC条件で分離されるが、質量分析計へのデータ取り込みは不適応の誘導体化試薬MTBSTFA溶出後に設定した。

サリン事件当時はサンリン標準品を有していなかったため、MSはion trap, QP, およびtandem型の複数機種、イオン化はEIおよびisobutane CI（positive/negative）を組み合わせ正確を期した。法科学鑑定においては、分子量は化合物の同定・確認には不可欠な情報であることから、イオン化はEIとともにCIは必須条件である。凝縮剤類のRIの文献値および鑑定で得られた測定値をTable1に示す。

4. 鑑定例

4.1 松本サリン事件

Fig.3に松本サリン事件の池の水試料の有機溶媒抽出物を、Fig.4に中毒死した被害者血液の水層画分のt-BDMS誘導体化物のion-trap型GC-MS測定例を示す。サリンのEIマススペクトルにおいては、分子イオンM⁺は観測されず、特徴的なbase peak ion（BP, m/z 99）が観測された。Isobutane-CIで加えてM+1（m/z 141）が観測された。サリン加水分解物DIMPはM+1（m/z 181）がBP（m/z 97）とともに観測された。SassとFisherはサリンのEI-MSの特徴的なフラグメントイオン（m/z 99）についてFig.5に示すフラグメンテーションを提案している。DIMPのm/z 97はこのフラグメンテーションを支持する結果である。

本稿では例示しないが、サリンの確認・同定はGC-MSのRIおよびマススペクトルのほかに、選択性の高い窒素・リン検出器（NPD）や原子発光検出器（AED）付きGCによる分析を行い、GC-MSのサリンおよびDIMPに相当するピークは分子内にリンを有する化合物であることを確かめた。CreasyらもGC-AEDの有効性を報告している。

サリン加水分解物IMPA、MAPのt-BDMS誘導体は、M-57の特徴的なフラグメントイオンやM+1が観測され
Fig. 6. Total ion chromatograms of a sarin sample emitted in Tokyo Subway attack.

た、サリン中毒死者の血液試料よりサリン分解物が検出された世界初の例である。Katagiら28も、*VX*中毒死者の血液から*VX*加水分解物メチルホスホン酸エチル (EMPA)を同様に*I-BDMS*誘導体として検出している。

4.2 東京地下鉄サリン事件で押収されたプラスチック容器内の液体試料

東京地下鉄サリン事件では、地下鉄内で未開封のサリン入りプラスチック袋が2袋発見された。その1袋のTICをFig. 6に示す。主成分はサリン、*N,N*-ジェチルアミリニン (DEA)、n-ヘキサンがほぼ等量の組成であり、微量成分としてDFP、DIMP、トリスプロピルホスホン酸 (TIPO)が検出された。サリン合成シナプトの作製を経てサリン合成中間体であるtrialkylyphosphate (TRP)がGC-MS装置内で容易にtrialkylyphosphate (TRPO)に酸化されることが明らかになった。したがって、Fig. 6のTIPOはTIPが分析中に酸化されTIPOとして検出されたものと判断された。

4.3 サリン合成ブラン

サリンの合成法はSIPRI25に示されているように、PCl₃を合成出発原料とし5工程を経てサリンを合成するブランである塩水一色村の第7サティアの組み立て装置で、得られたGC-MSにおけるイオンピークを検出した結果、サリン合成の各工程に対応すると考えられる合成中間体、副生成物が多数検出された26-27。Table 2にそれらのGC-MSのRIとモニタリングイオンを示す。

5. 結論

東京地下鉄サリン事件は日本警察始まって以来の未確認の重大事件であったが、前年の松本サリン事件を経験していたこともあり、事件発生後、短時間内で原因物質をサリンと特定できた。さらに、その後のオム真理教信者があらかじめ事件のシナリオを全うにしたものになると事が考えられた。しかし、今回紹介した分析法はサリン標準品として組み立てたものを試料の前処理や試料調製、検出装置などに面接的検討を必要としていない。神経剤分解物の標準的な手法であるシリル誘導体化GC-MSはマトリックスの影響を容易に受け、試料によっては不検出となることもあり、適切な前処理が必要である。その後、科学警察研究所では化学剤標準品を用い詳細な検討を加え、各種法科学資料での定量的な高感度分離28-29が見られた。

化学剤の加水分解物の検出をもって関連化学剤への暴露の証明法としているが、加水分解物の生体内半減期は短いために、それに代わって生体内半減期が長い、化学剤と生体高分子と付加化合物（アダクト）を分析対象とし、

Table 2. Retention Parameters and Monitoring Ions of Sarin and Its Related Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>MW</th>
<th>RI</th>
<th>m/z</th>
<th>EI</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethyl phosphate (TMP)</td>
<td>124</td>
<td>688²⁸</td>
<td>115</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Sarin</td>
<td>140</td>
<td>817</td>
<td>99</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Dimethyl methylphosphonate (DMMP)</td>
<td>124</td>
<td>876</td>
<td>79</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Trimethyl phosphate (TMPO)</td>
<td>140</td>
<td>921</td>
<td>110</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Triisopropyl phosphate (TIP)</td>
<td>208</td>
<td>1015</td>
<td>82</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>Disisopropyl methylphosphonate (DIMP)</td>
<td>180</td>
<td>1058</td>
<td>97</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Triisopropyl phosphate (TIPO)</td>
<td>224</td>
<td>1180</td>
<td>99</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>IMPA*BDMS</td>
<td>252</td>
<td>1317</td>
<td>153</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>MPA*BDMS</td>
<td>324</td>
<td>1569</td>
<td>267</td>
<td>325</td>
<td></td>
</tr>
</tbody>
</table>

²⁸ Extrapolated.
N. Tsunoda

誘導体化 GC-MS（20），（31）や LC-MS（32）による検出が試みられている。その他さまざまな手法による検出法が多数報告されている。詳細は進歩総説（33）を参照された。

和歌山毒ケリー事件の中毒原因物質は亜ヒ酸であったが、ヒ素の毒性はその化学形によって大きく異なる（34）。強毒性の 3 倍の無機ヒ素は生体内で容易に代謝され、メチル化され毒性の低い有機ヒ素化合物となり解毒作用が働く。また食事を介してヒ素化合物を摂取しているので、経口と経皮だけではヒ素中毒を判断することは危険であり、ヒ素の化学形態分析（speciation）が不可欠である。筆者は ppb レベルの高濃度分析が可能な LC-ICP-MS を用い、被害者の血液、尿、カリー、河川水、土壌、すり取り試料など各種資料中のヒ素の化学形態分析を行った（34）。

2003 年茨城県で有機と無機化合物中毒が疑われる症例（35）が発生したが、原因は予想された放射性水中のヒ素が検出された。Kinoshita ら（36）は LC-ICP-MS を用い、化学兵器の一つであるジフェルアミンアルカリおよびジフェルジアミノアルカリの分解物由来の化合物とされるフェルシアン酸およびジフェルアミノアルカリ酸を検出している。

このように、MS は高感度で化学構造情報が得られる有数の検出器であり、MS² を検出器とする各種 chromatography による ng/mL レベルの定量検査は、法律顾问領域では今以上に mainstream として隆盛すると確信する。また、より高性能な MS 機器の開発への期待は絶大なものがある。

松本および東京地下鉄サリン事件では、わが国には存在しないと考えられていたサリンが大量に差別有夫に使用され、その後も亜ヒ酸、アジ化物などの希有な毒物事案が発 生した。さらに 2001 年の 9・11 タロおよびそれに続く炭疽菌事件後は、核・生物・化学兵器 (RNBC) を包括する危機管理の重要性がいっそう認識され、今日に至っている。2001 年 11 月 22 日に内閣官房から「NBC タロ対処現状関係機関連携モデル」が発表された（37）。原因物質の特定における連携モデルが提示された。このような世界的な緊張状態を脅かし、新規な毒物による事案が将来発生する可能性は否定できない。今後も新規毒物に十分に対応できる分析システムの構築や新規分析法の開発を目指した研究が求められている。

サリン事件後 10 年を回顧する会がいくつか開催される予定である。6 月に開催される International Symposium on NBC Terrorism Defense（38）はその一つとして注目される。

文献
5) 日本薬学会編, 薬剤物質試験法と注釈 (第 4 版), 南山堂 (1992).
6) http://www.swgdrug.org
12) 角田健子, 潮水記憶, 科学報告, 50, 59 (1997).

—162—
Keywords: Sarin, Chemical warfare agent, Hydrolysis product, Gas-chromatography/mass spectrometry, Retention index.