Mass Spectrometry
Online ISSN : 2186-5116
Print ISSN : 2187-137X
ISSN-L : 2186-5116
Original Article
UV-Absorbing Ligand Capped Gold Nanoparticles for the SALDI-MS Analysis of Small Molecules
Tomomi KakutaNichayanan ManyuanHideya Kawasaki
Author information

2022 Volume 11 Issue 1 Pages A0107


We report that modifying the surface of gold nanoparticles (Au NPs) with 2-mercaptopyridine-3-carboxylic acid (MPyCA) enhances surface-assisted laser desorption/ionization (SALDI) performance in the analysis of small molecules. The MPyCA ligand has a strong UV absorbance at the wavelengths of the typical MALDI laser at 337 nm, resulting in efficient thermal/energy transfer from the Au NPs to analytes during pulse-laser irradiation. In addition, the MPyCA ligand contains carboxylic acid and pyridine groups, providing affinity to various analytes through acid-base interactions.

Irganox1010, glucose and meropenem were utilized as model analytes to evaluate SALDI performance because these molecules are generally ionized with difficulty by conventional MALDI-MS. Our results demonstrate that the MPyCA-Au NP based SALDI-MS could detect Irganox1010, glucose and meropenem with stronger ion peaks for these molecules compared to MALDI-MS using CHCA. The limit of detection (LOD) for meropenem was much lower in the case of SALDI (LOD=1 ng/mL) compared to MALDI (LOD=10 μg/mL).

Content from these authors
© 2022 Tomomi Kakuta, Nichayanan Manyuan, and Hideya Kawasaki. This is an open-access article distributed under the terms of Creative Commons Attribution Non-Commercial 4.0 International License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

This article is licensed under a Creative Commons [Attribution-NonCommercial 4.0 International] license.
Previous article Next article