多結晶材料における 3 次元結晶粒径の分布の評価

松浦 清隆* 伊藤 洋一**

1. はじめに

一般的な金属材料やセラミックス材料は無数の結晶粒で構成されており、これら多結晶材料の諸性質は 3 次元粒径の分布に支配されることが知られている(1)〜(3)。しかし、この分布を直接に測定することは多くの困難を伴う(4)。それゆえ、材料の切断面で測定される結果をもとに 3 次元粒径分布を評価しようとする研究が古くから行われてきた(5)〜(7)。

これら従来の研究はいずれも優れたものであるが、いくつかの問題がまだ残されているように思える。例えば、結晶粒の形状を球(5),(6)や正十四面体(6),(7)などの立体で近似している。このときの問題は、材料中の結晶粒すべてが同じ形状を持つとした点にある。実際には 1 つの材料を構成する結晶粒の大きさと形状は様々であり、多数の小さな結晶粒と隣接する確率が高いことを考慮すると、結晶粒の形状を粒径によって変化させるような粒形状のモデルを導入する必要があるように思える。また、一般的な金属材料では粒径が対数正規分布に近い分布を持つことが多いため(8)，この分布を前提にした 3 次元粒径分布の評価法が研究された(7)。しかし、2 次再結晶により一部の結晶粒が選択的に粗大化した材料や任意の粒度分布を持つ粉末から作られた焼結材ではこれとは異なる分布を持つので、分布の種類によらずに 3 次元粒径の分布が評価できることが望まれる。

本稿では、著者らによって最近研究された 3 次元粒径分布評価法(9)について、できるだけ平易に解説する。本評価法の特徴は、以下の 3 点に要約される。

(i) 結晶粒の形状を、1 種類の立体ではなく、その粒径に応じて種々の多面体に近似する点。

(ii) 特定の結晶粒径分布だけでなく、任意の粒径分布を持つ材料に対しても、2 次元粒径の分布の測定結果のみから 3 次元粒径の分布が評価できる点。

(iii) 画像解析機と計算機の接続により、迅速な測定と計算が同時に行われる点。

2. 評価法の基本概念

ある固体中に 1 つの形状と 1 つの大きさを持つ立体が分数分布するとき、この固体の任意切断面上にはこの立体の断面が様々な大きさを持って現れる。しかし、個々の大きさの断面が現れる確率はそれぞれ定まっているので、この固体の切断面に現れる立体の断面の大きさの分布はその立体の形状に固有のものとして定まる。以後、これを基本分布 f とする。

次に、形状が同じであるが大きさが D_1 から D_n まで異なる立体がそれぞれ F_1 から F_n の頻度で固体中に分布するときには、この固体の切断面には

\[\sum_{i=1}^{n} (k_i \cdot f_i) \]

として基本分布 f を合成した分布が現れる。このとき、合成係数 k_i は D_i の大きさを持つ立体の断面がこの固体の切断面に現れる頻度を示し、その値は F_1 と D_i に比例すると考えられる。したがって、切断面で測定された 2 次元径分布と上記の合成分布を比較して両者が一致するときの k_i から k_n を求めることにより、D_1 から D_n の大きさを持つ立体がこの固体中に分布する頻度 F_1 から

本文では、結晶粒の体積等価直径(結晶粒の体積を球に換算したときの直径)を 3 次元粒径と呼ぶ。一方、材料の切断面で観測される結晶粒断面の面積等価直径(結晶粒の断面積を円に換算したときの直径)を 2 次元粒径と呼ぶ。
F_n（3次元径の分布）を評価することができる。

このk_iを求める作業はn元1次方程式を解く作業に他ならないが、この方程式の定数項となる実測分布中の個々の頻度値は測定誤差を含むので、その解には例えば負の値のような不適切なもののが現れることがある。したがって、実際の計算では、$0 \leq k_i \leq 1$の範囲でk_iを細かく変動させ、合成分布と実測分布の差の平均が最小となる条件によりk_iを求める。

以上述べた本評価法の基本概念の妥当性を確認するため、簡単な模型実験が行われた。すなわち、種々の大きさの鋼球をAl-Cu合金とともに鍛込み、この鍛塊の切断面に現れた鋼球の断面径の分布から鋼球径の分布を評価し、その結果と実際に鍛込まれた鋼球径の分布を比較した。図1にその結果を示した。図1A-b中に破線で描かれた曲線は球に関する基本分布であり、鍛塊の切断面上での実測結果と一致した。図1Aから1Cのいずれにおいても評価結果を実際の鋼球径の分布を精度よく再現し、本評価法の基本的な考え方が妥当であることが確かめられた。なお、この評価における所要時間は、画像解析による断面径分布の測定と評価のための計算を合わせて数十sであった。ただし、測定粒数は約500。

粒径分布の階級数は6、k_iの変動幅は0.01％とした。

3. 結晶粒の形状と基本分布

単純な形状である球の場合とは異なり、多面体の場合にはその基本分布が確率論からは容易に導かれない。そこで図2に示した12種類の多面体について、それぞれを計算機により5×10^5回切断して各多面体断面の2次元径を求め、これを多面体の3次元径で規格化した相対径の基本分布を得た。その結果の一部を図3に示した。基本分布の詳細は多面体の種類によって異なったが、いずれも基本的には共通の分布形状を持った。この分布は

$$P_l = K_l \exp \left[- \left(\frac{l_{\text{Max}} - l}{l_{\text{Max}} (1 - l_p)} \right) \right]$$

という関数で近似した。ここで、

l : 相対径
P_l : 相対径lに対する確率密度
K_l : 最大確率密度
l_p : 最大確率密度を示す相対径
l_{Max} : 最大相対径

であり、図4に示したようにK_lとl_{Max}およびl_pはそれぞれ

$$K_l = 1.22m^{0.55}$$

$$l_{\text{Max}} = 0.31m^{-0.53} + 1.0$$

図1 Al-Cu合金とともに鍛込まれた鋼球の直径分布（a）、鍛塊の切断面上で測定された鋼球の断面直径の分布（b）、切断面上での測定結果から評価された鋼球の直径分布（c）。図A-b中の破線は確率論から導かれた球の断面直径の分布。

図2 結晶粒のモデルとされた種々の多面体。
図3 多面体の体積等価直径に対する断面の面積等価直径の比（相対直径）の分布。（a），（b），（c）の分布は、それぞれ図2中の4, 14-C, 32-Cの多面体に対応する。階級数は100。

図4 多面体の切断面分布（基本分布）の特徴値に及ぼす多面体の面数の影響。

図5 種々の多面体についての基本分布。

\[l_p = -0.47m^{-0.63} + 1.0 \quad (4) \]

図2の（a）および図4の（a）における多面体の面数の分布を示す。一方、
\(m \) は平均粒径 \(D_{sv} \) に対する個々の粒径 \(D \) の比により
\[m = 17D/D_{sv} - 3 \quad (5) \]
と記述される（10）。したがって、個々の大きさの結晶粒について、その粒径から形状が定まり（式（5））、
その形状から基本分布を特徴づける数値が求まり（式（2）〜（4））。これらの値から個々の大きさと形状
の結晶粒についての基本分布が計算される（式（1））。\n
4. 評価の手順

3次元結晶粒径の分布の評価は、以下の手順で進められる。

(a) まず、多結晶材料の切断面上に現れた個々の結晶粒の断面の2次元径を画像解析機により測定し、任意の階級数に分類して数数分布（\(l_i, g_i \)）を求め、その結果を計算機に読み込む。ここで、\(l_i \) は切断面上での2次元径についての階級における代表値,
\(g_i \) は \(l_i \) に対する頻度である。

(b) 手順(a)で得られた2次元径の分布（\(l_i, g_i \））における各階級の粒径 \(l_i \) について、式（5）により多
面体モデルの面数 \(m \) を定める。ただし、式（5）における \(D_{sv} \) は3次元径の平均値であり、この段
階では未知である。したがって、ここでは仮に2
次元径の平均値 \(l_{sv} \) を用いて \(m \) を求めるが、これ
については後の手順(f)で修正される。

(c) 手順(b)で求められた \(m \) を用いて式（2）〜（4）
により基本分布を特微づける値 K_i と l_{Max} やび l_p を計算し、これらを用いて式 (1) により各階級の粒径 l_i を持つ結晶粒についての基本分布 P_i を計算する。

(4) 式 (1) の基本分布は確率密度の分布を与えるので、これを粒径分布の各階級の区間で積分することにより各階級の頻度が得られる。これにより各階級の頻度を式 (6) のように加算し、この階級の合成頻度 h_i を計算する。

\[h_i = k_i \int_{(i-1)w}^{i_w} P_i \, dl + \cdots + k_n \int_{(n-1)w}^{n_w} P_i \, dl + k_{i-1} \int_{(i-1)w}^{(i-1)w} P_i \, dl \]

ここで、

- i：階級番号、$1 \leq i \leq n$
- w：階級幅
- n：全階級数
- P_i：階級 i の粒径 l_i を持つ結晶粒についての基本分布

である。

(5) 要求される評価結果の精度に応じて k_i の値を適切な関数で変動させて、式 (7) の値を最小にするときの k_i の値を求める。

\[\Delta^2 = \sum_{i=1}^{n} (h_i - g_i)^2 \]

ここで求められた k_i の値から 3 次元粒径分布が得られるが、手順(b)で m を求める際に 2 次元粒径の平均値 l_{av} を用いたことに注意しなければならない。

(6) 多面体の数 m は 3 次元粒径分布の平均値から求められなければならないので、この平均値を式 (8) から計算する。この結果を手順(b)にフィードバックして、手順(b)の(i)を繰り返す。

\[D_{av,j} = \sum_{i=1}^{n} (k_i \cdot l_i) \]

ここで、$D_{av,j}$ の添え字 j はフィードバックの回数である。j の増加に伴う $D_{av,j}$ の値の変化が十分に小さくなったとき計算を打ち切り、そのときの k_i から 3 次元粒径の分布を求める。

5. 計算例

本評価法を用いて、1473 K で 18 ks 保持後急冷された低炭素鋼のオーステナイト粒径の分布を評価した。結果を図 6 に示す。この試料の場合、2 次元粒径と 3 次元粒径は類似の分布を持っていたが、後者の分布は大きな平均値と小さな標準偏差を持っており、特に 2 次元分布において高い頻度で観察された小さな粒径は 3 次元分布では少なかった。

これは、図 5 に見られるように結晶粒が小さく切断される頻度は少ないが、種々の大きさの結晶粒がそれぞれ小さく切断される確率が加算されるため、材料中には小さな結晶粒が少ないにもかかわらず切断面上ではこの階級のものが多く測定されることを示している。

本評価法の妥当性を検討するため、試料の切断面上に現れる個々の結晶粒の多形断面の頂点数の分布について、本評価法で用いられた多面体モデルから推算される結果と実測結果を比較した。

基本分布の作成過程において、各多面体の多形断面の頂点数分布が同時に得られる。また、結晶粒径と多面体種の間には式 (5) に示される関係があるので、評価された 3 次元粒径分布の結果から多面体種の分布が計算できる。したがって、試料切断面上に現れる多形断面の分布が推算できる。この結果と実測結果が一致すれば本評価法が正しいと考えた。
図7 低炭素鋼の切断面上に現れる結晶粒の頂点数分布。横軸目盛りは頂点数の自然対数、縦軸目盛りは縦積頻度の正規確率紙の目盛り。

図7に、試料切断面上の結晶粒の頂点数分布を示した。推算結果が実測結果とほぼ一致したことから、本3次元粒径分布評価法は妥当であると判断された。

最後に、北海道大学工学部教授 戸田敏夫先生には本稿をまとめるに当たって有益な助言を多く頂きました。ここに深く感謝の意を表します。

文 献

（1）宮山 勝：化学総説 No. 37「機能性セラミックスの設計」（日本化学会編），学会出版センター，（1982），190。
（3）高山善匡，杜澤達美，加藤 一，勝又千尋，古城 純，堀 茂：日本金属学会誌，53 (1989)，579。
（5）J. W. Cahn and R. L. Fullman: Trans. AIME, 206 (1956)，610。
（6）M. N. Bodyako and V. P. Kasichev: Pract. Metallography, 17 (1980)，232。
（7）高山善匡，杜澤達美，加藤 一，古城 純，堀 茂：日本金属学会誌，51 (1987)，907。
（8）F. Schückher：計量形態学（牧島邦夫訳），内田老鶴新社，（1972），223。

*