Nanocrystalline Icosahedral Phase Formation in Melt Spun Ti–Zr–Ni Alloys

B. S. Murty1, *, W. T. Kim2, D. H. Kim3 and K. Hono1

1National Research Institute for Metals, Tsuchi, 305-0047, Japan
2Department of Physics, Chongju University, Chongju 360-764, Korea
3Department of Metallurgical Engineering, Yonsi University, Seoul 120-749, Korea

The paper reports icosahedral phase (i-phase) formation in the nanocrystalline state in Ti55Zr20Ni25 and Zr55Ti25Ni20 alloys. While nanocrystalline i-phase forms directly from the melt during melt spinning at low wheel velocity of 20 m/s, nanocrystallization of amorphous phase has been observed on subsequent annealing after melt spinning at higher wheel velocities of 30 and 40 m/s. The i-phase is stable up to 873 K in Ti-rich alloy, while it transforms to crystalline phases in Zr-rich alloy below this temperature. The i-phase formed both directly from the melt and from the amorphous phase is much finer in Zr-rich alloy compared to Ti-rich alloy.

(Received October 26, 2000; Accepted December 26, 2000)

Keywords: metallic glass, quasicrystal, melt spinning, phase transformations, transmission electron microscopy (TEM)

1. Introduction

Since the early report by Köster et al.,1 a number of investigators have reported2–7 nanostructural crystallization of Zr-based amorphous alloys. All these reports deal with the formation of icosahedral phase (i-phase) as a transient metastable phase during the crystallization of the metallic glass. While the early investigators felt the necessity of a multicomponent alloy for the i-phase formation, the present authors have shown that it can form even in binary Zr–Pd alloys.7 In a major breakthrough, very recently i-phase formation is observed directly by melt spinning in Zr–Pt8,9 and Zr–Ni–Mn10 alloys. Li et al.10 reported that Mn is essential for i-phase formation in Zr–Ni–Mn alloy. Though i-phase formation in the melt spun Zr alloys is new, it is an established fact in Ti based alloys and a number of reports exist on its formation in rapidly solidified Ti–Zr–Ni alloys.11–13 In fact, metastable i-phase has been found in a wide composition range,11 while stable i-phase forms in a narrow composition range.13 However, i-phase reported in the Ti–Zr–Ni alloys is coarse grained (~200 nm). I-phase is generally known to be brittle, while the formation of nanocrystalline i-phase in the amorphous matrix appears to strengthen the Zr alloys without any significant loss of ductility.9 Thus, the present work aimed at synthesizing the i-phase in the nanocrystalline state by controlled crystallization of the amorphous phase at two compositions (Ti55Zr20Ni25 and Zr55Ti25Ni20), which are close to the ternary eutectics in this system.11 It is well known that amorphous phase is stabilized at the deep eutectic compositions, which justifies the choice of compositions for the present work.

2. Experimental Details

Ti55Zr20Ni25 and Zr55Ti25Ni20 alloys were prepared by arc melting of high purity metals (99.9% Zr and Ti, 99.99% Ni). The alloys were rapidly solidified by single roller melt spinning at wheel surface velocities of 20, 30 and 40 m/s in a reduced Ar atmosphere. X-ray diffraction (XRD) studies were carried out using Rigaku diffractometer (RINT 2500) with Cu Kα radiation. The thermal stability of the melt spun alloys was studied by differential scanning calorimetry (DSC) using Perkin-Elmer Pyris-1 at a heating rate of 40 K/min. Transmission electron microscopy (TEM) studies were carried out using a Philips CM200 microscope. The samples for TEM studies were prepared by ion milling.

3. Results and Discussion

Figures 1(a) and (b) are the XRD patterns of the melt spun Ti55Zr20Ni25 and Zr55Ti25Ni20 alloys, respectively, at different wheel velocities. The XRD patterns at 20 m/s for both the compositions could be indexed as i-phase based on the Elser’s14 indexing scheme. The quasiallattice constant for the above two compositions is 0.5042 and 0.5274 nm, respectively. The higher quasiallattice constant of Zr-rich alloy is expected from the larger atomic radius of Zr (0.159 nm) compared to Ti (0.145 nm). Amorphous phase forms in these alloys at melt spinning wheel velocities of 30 and 40 m/s (Figs. 1(a) and (b)). The TEM observation of these alloys melt spun at 20 m/s has shown single phase microstructure of i-phase, suggesting that both these alloys fall into the i-phase field in this system.11 Figures 2(a) and (b) are the TEM bright field image and selected area electron diffraction/microdiffraction patterns (insets of Figs. 2(a) and (b), respectively) of melt spun Ti55Zr20Ni25 and Zr55Ti25Ni20 alloys, respectively, at 20 m/s. The i-phase grains in case of Zr-rich alloy are much finer (10–20 nm) than those in Ti-rich alloy (30–100 nm). The electron diffraction patterns (insets of Figs. 2(a) and (b)) confirm the quasicrystalline nature of these alloys. It is interesting to note that though the grain size of i-phase is coarser in Ti-rich alloy, the XRD pattern of the alloy shows broader peaks compared to Zr-rich alloy (Figs. 1(a) and (b)), suggesting the possible presence of phason strains in the former.

Figure 3(a) shows the DSC traces of the Ti-rich alloy at different melt spun wheel velocities. At 20 m/s, the alloy has not shown any significant peaks in its DSC trace. The XRD pattern of this alloy isochronally annealed in DSC at 873 K.
is the same as that of the as melt spun alloy (Fig. 4), suggesting that the i-phase is stable in this alloy up to 873 K. The specimen at the other two wheel speeds exhibit one exotherm at around 840 K (Fig. 3(a) and Table 1). The enthalpy associated with the exotherm (Table 1) at both the wheel speeds is similar ($\sim -1.0$ kJ/mol), suggesting that the amorphous phase transforms to the same phase at both wheel speeds. The XRD patterns of the alloy melt spun at 40 m/s and isocrONGLY annealed specimen at 818 K indicate only amorphous halo, while that annealed at 873 K shows the presence of i-phase along with equilibrium phase mixture of Laves phase (TiZrNi), Ti$_3$Ni and $\alpha$-(Ti, Zr) as evident from Fig. 5(a). The TEM study of the alloy melt spun at 40 m/s and that of isocrONGLY annealed at 843 K (Fig. 6(a)) showed predominantly i-phase with a grain size of about 20–100 nm. Thus, the exotherm observed in the DSC trace of the Ti-rich alloy can be attributed, at least partly, to the nanoquasicrystallization of the amorphous phase.

The DSC traces of the Zr-rich alloy at different melt spun wheel velocities are depicted in Fig. 3(b). The alloy melt spun at 20 m/s has one exotherm at around 770 K, suggesting that the i-phase observed in the melt spun condition is not as stable as in the Ti-rich alloy and transforms to equilibrium phase mixture of TiZrNi, Ti$_3$Ni and $\alpha$-(Zr, Ti). At the other melt spun wheel velocities, the alloy has two exotherms at around 640 and 760 K as shown in Fig. 3(b) and Table 1. The XRD (Fig. 5(b)) and TEM (Fig. 6(b)) studies of the alloy melt spun at 40 m/s and isocrONGLY annealed at 708 K indicate the presence of i-phase, suggesting that the first exotherm in this alloy can be attributed to nanoquasicrystallization of the amorphous phase. Interestingly, the i-phase formed in the Zr-rich alloy isocrONGLY annealed at about 70 K above the exothermic peak temperature (640 K) is much finer ($\sim 5–10$ nm) than that formed in the Ti-rich alloy (20–
100 nm) that is annealed very close to the peak temperature (845 K). It can be recalled that the grain size of i-phase formed during melt spinning at 20 m/s is also finer in the Zr-rich alloy. This suggests that probably the nucleation rate of i-phase is higher in Zr-rich alloy and the growth rate is lower. The higher nucleation rate could be due to high negative enthalpy of mixing of Zr–Ni pair (−49 kJ/mol) when compared to Ti–Ni pair (−35 kJ/mol). This could probably increase the driving force for the formation of i-phase and thus lower the activation barrier for its nucleation in the Zr-rich alloy. The lower growth rate of i-phase in Zr-rich alloy could probably be attributed to the lower diffusion rates in this alloy due to larger atomic radius of Zr (0.159 nm) compared to Ti (0.145 nm). The i-phase formed in Zr-rich alloy during the first crystallization event transforms during the second crystallization stage to TiZrNi, Zr2Ni and α(Zr, Ti) as shown in Fig. 5(b).

The Vicker’s hardness measurements (Table 1) have shown that both the Ti-rich and Zr-rich alloys have significantly higher hardness in the nanoquasicrystalline state (755 and 610 VHN, respectively) compared to the amorphous state (555 and 375 VHN, respectively) in the melt spin condition. The hardness values of the Ti-rich and Zr-rich alloys increases further by nanoquasicrystallization of the amorphous phase to 810 and 620 VHN, respectively. Though, the Ti-rich alloy has higher hardness than the Zr-rich alloy, the extent of increase in hardness due to nanoquasicrystallization of the amorphous phase is higher in the latter (45 and 65%, respectively).

### 4. Conclusions

1. I-phase is obtained in the nanocrystalline state in the Ti55Zr20Ni25 and Zr55Ti25Ni20 alloys melt spun at 20 m/s, while at higher melt spin wheel velocities (30 and 40 m/s), the alloys become amorphous.
2. In both the alloys, nanoquasicrystallization of the amorphous phase is observed. While the i-phase is stable up to 873 K in Ti-rich alloy, it transforms to crystalline phases below this temperature in Zr-rich alloy.
3. The i-phase formed both directly from the melt and the amorphous is much finer in Zr-rich alloy compared to Ti-

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Melt spin wheel velocity (m/s)</th>
<th>VHN (Peak)</th>
<th>Quasicrystallization peak (K)</th>
<th>ΔH (kJ/mol)</th>
<th>Crystallization peak (K)</th>
<th>ΔH (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti55Zr20Ni25</td>
<td>20</td>
<td>755</td>
<td>837</td>
<td>−1.2</td>
<td>773</td>
<td>−1.5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>700</td>
<td>845</td>
<td>−1.0</td>
<td>760</td>
<td>−1.2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>555</td>
<td>845</td>
<td>−1.0</td>
<td>757</td>
<td>−1.0</td>
</tr>
<tr>
<td>Zr55Ti25Ni20</td>
<td>20</td>
<td>610</td>
<td>644</td>
<td>−1.1</td>
<td>760</td>
<td>−1.2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>375</td>
<td>640</td>
<td>−2.0</td>
<td>757</td>
<td>−1.0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>375</td>
<td>640</td>
<td>−2.0</td>
<td>757</td>
<td>−1.0</td>
</tr>
</tbody>
</table>
rich alloy.

Acknowledgment

One of the authors (BSM) gratefully acknowledges the Japan Science and Technology Corporation for the provision of a STA fellowship.

REFERENCES