MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Appearance of a Novel Pressure Plateau in RNi5-H (R = Rare Earth) Systems
Hiroshi SenohTasuku YoneiHiroyuki T. TakeshitaNobuhiko TakeichiHideaki TanakaNobuhiro Kuriyama
Author information
JOURNAL FREE ACCESS

2005 Volume 46 Issue 2 Pages 152-154

Details
Abstract

We investigated the hydrogen storage properties in a HoNi5-H system combined with TbNi5-H and DyNi5-H systems. Pressure-composition (P-C) isotherms in the HoNi5-H system show one reversible pressure plateau during hydrogen absorption and desorption with a hysteretic phase transition. The maximum hydrogen storage capacity was found to be H/HoNi5=ca. 2, and no second plateau similar to that observed in other RNi5-H (R: rare earth) systems was observed, even at 196 K. Two pressure plateaux found in light rare earth-based RLNi5-H (RL=La, Pr, Nd, Sm and Gd) systems tend to disappear in TbNi5-H and DyNi5-H systems and are scarcely present in HoNi5-H system. On the other hand, a novel pressure plateau appears at low hydrogen content in these systems due to the presence of a new hydride phase, and the plateau region extends from TbNi5-H and DyNi5-H to HoNi5-H systems. Contrary to the other plateaux, the pressures of the novel plateau during both hydrogen absorption and desorption decrease with decreasing unit cell volume of RNi5 compounds or with increasing atomic number of the R element in RNi5-H systems. To clarify the effect of 4f electrons in the R element in RNi5-H systems on the novel plateau, we have evaluated the hydrogen storage properties in an YNi5-H system. Our results show that YNi5 compound with lattice constants similar to those of TbNi5 and DyNi5 compounds has a similar P-C isotherm, suggesting that 4f electrons has no direct influence on the appearance of the novel plateau.

Content from these authors
© 2005 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top