MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Determination of Dispersive Properties of Silicas by Inverse Gas Chromatography: Variation with Surface Treatment
Young-Cheol YangPyoung-Ran Yoon
Author information
JOURNAL FREE ACCESS

2007 Volume 48 Issue 6 Pages 1548-1553

Details
Abstract

The application of inverse gas chromatography (IGC) to the examination of the surface properties of untreated crystalline and fused silica and surface-treated silicas with silane coupling agents is discussed. The carbon content of the silane coupling agents adsorbed on the surface of the silicas was determined by means of a Carbon Determinator. If the assumption is made that each silane coupling agent molecule occupies an area of 0.5∼1 nm2, the adsorption amounts show that multilayers are generally adsorbed onto the silica surfaces. This paper presents and discusses the dispersive properties expressed by γSD, the dispersive component of the surface free energy, as determined at various temperatures. At the same temperature of IGC measurement, the values of γSD determined by IGC were lower for the crystalline silica than for the fused silica. This means that crystalline silica is more stable than fused silica. The silica surface-treated with γ-methacryloxy propyl trimethoxy silane (MTMS) shows a relatively high γSD value(42.75 mJ·m−2 at 160°C). This means that this sample should be compatible with polyester(27±3 mJ·m−2 at 290°C) at high temperature. The silicas that were surface-treated with γ-glycidoxy propyl trimethoxy silane (GMS) and γ-mercapto propyl trimethoxy silane (MCMS) exhibit γSD values that are in close agreement with those of almost all resins(30 mJ·m−2 at 160°C). The γSD value of the silica surface-treated with γ-amino propyl triethoxy silane (AES) is similar to that of epoxy resin(40 mJ·m−2 at 80°C). This means that this sample is compatible with epoxy resin at relatively low temperatures.

Content from these authors
© 2007 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top