Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Dissolution Behavior of La2O3, Pr2O3, Nd2O3, CaO and Al2O3 in Sulfuric Acid Solutions and Study of Cerium Recovery from Rare Earth Polishing Powder Waste via Two-Stage Sulfuric Acid Leaching
Namil UmTetsuji Hirato
Author information

2013 Volume 54 Issue 5 Pages 713-719


This study describes a hydrometallurgical process to investigate the cerium recovery from rare earth polishing powder waste (REPPW) containing main elements such as cerium, lanthanum, praseodymium, neodymium, calcium and aluminum. First, dissolution experiments on La2O3, Pr2O3, Nd2O3, CaO and Al2O3 with 5 µm particle size in sulfuric acid solutions were carried out using a batch reactor with various acid concentrations (1–15 mol/dm3) at different temperatures (30–180°C). The effects of these two parameters on the dissolution reaction were studied. The obtained results showed that two sequential leaching steps were needed to separate cerium from the mixture of CeO2, La2O3, Pr2O3, Nd2O3, CaO and Al2O3. The total process for cerium recovery from REPPW via two-stage acid leaching was then developed through the collection of experimental results. Moreover, the dissolution rate of Al2O3 was expressed by a shrinking core kinetics model. The variation of the dissolution rate constant with temperature obeyed the Arrhenius equation with activation energy of 130 kJ·mol−1 and reaction rate constant as a function of the acid concentration of C0.41. On the basis of the above data, a k-T (reaction rate constant-reaction temperature) diagram for a CeO2–Al2O3–H2SO4–H2O system that permits rational extraction of CeO2 and Al2O3 was devised.

Information related to the author
© 2013 The Mining and Materials Processing Institute of Japan
Previous article Next article