MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Special Issue on Materials Science on High-Entropy Alloys II
Crystal Plasticity Finite Element Simulation Considering Geometrically Necessary Dislocation Distribution for Reproducing Mechanical Anisotropy of Rolled CrMnFeCoNi High-Entropy Alloy
Nomun Gerel-ErdeneYoshiteru Aoyagi
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2024 Volume 65 Issue 9 Pages 1008-1014

Details
Abstract

The current trend in research on the physical properties of high-entropy alloys has been progressively increasing as there are many unknown possibilities for developing high-entropy alloys for advanced applications. This study investigated the effect of microstructures of rolled high-entropy alloy from the viewpoint of crystal orientation and dislocation density distribution to reproduce mechanical anisotropy using crystal plasticity finite element simulation. The crystal orientation and the geometrically necessary dislocation density of the rolled material were quantitatively estimated from experimental data of electron backscatter diffraction. Microstructural observation showed that particular textures were preferably oriented like in typical FCC metals. Even though the simulation results where only the preferred crystal orientation was considered did not show the expected mechanical anisotropy as in the experiment, the computational model with the dislocation density distribution and the preferred orientation showed the same tendency as the experiment.

Fullsize Image
Content from these authors
© 2024 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top