Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Hydrogen Absorption and Thermal Desorption Behavior of Ni-Ti Superelastic Alloy Immersed in Neutral NaCl and NaF Solutions under Applied Potential
Asahi OtaYushin YazakiKen’ichi YokoyamaJun’ichi Sakai
Author information
JOURNALS RESTRICTED ACCESS Advance online publication

Article ID: M2009078


The hydrogen absorption and thermal desorption behavior of Ni-Ti superelastic alloy immersed in neutral NaCl and NaF aqueous solutions at 25°C under an applied cathodic potential for 2 h have been systematically investigated by hydrogen thermal desorption analysis. The critical potential for hydrogen absorption is independent of the type and concentration of solution. The amount of absorbed hydrogen increases with decreasing applied potential, although it is only slightly changed by the type of solution. The amount of hydrogen desorbed at low temperatures, for the alloy immersed in NaF solutions, is larger than those in NaCl solutions, suggesting that the type of solution affects the hydrogen states in the alloy. The present results indicate that for Ni-Ti superelastic alloy, compared with titanium and its alloys, the critical potential for hydrogen absorption is located in a more noble direction, and the amount of absorbed hydrogen is large in NaCl and NaF solutions. Thus, the hydrogen embrittlement of Ni-Ti superelastic alloy probably occurs more readily than those of titanium and its alloys in NaCl and NaF solutions.

Information related to the author
© 2009 The Japan Institute of Metals and Materials