MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Alloy Designs of High-Entropy Crystalline and Bulk Glassy Alloys by Evaluating Mixing Enthalpy and Delta Parameter for Quinary to Decimal Equi-Atomic Alloys
Akira TakeuchiKenji AmiyaTakeshi WadaKunio YubutaWei ZhangAkihiro Makino
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: M2013352

Details
Abstract

The values of mixing enthalpy (ΔHmix) and Delta parameter (δ) were calculated with 73 elements from Miedema’s model for multicomponent equi-atomic alloys to investigate the possibilities of the alloys to be formed into high-entropy (H-E) alloys or high-entropy bulk metallic glasses (HE-BMGs). The equi-atomic alloys from about 15 million (73C5) quinary to 621 billion (73C10) decimal systems were evaluated by referring to a ΔHmix–δ diagram for zones S and B’s for H-E alloys with disordered solid solutions and BMGs, respectively, reported by Zhang et al. The results revealed that the number of quinary equi-atomic alloys plotted in zone S is 28405 (∼0.19% in 73C5), whereas those in zones B1 and B2 for conventional and Cu- and Mg-based BMGs, respectively, were 1036385 and 21518 (∼6.90 and ∼0.14%), respectively. This kind of statistical approach using ΔHmix–δ diagram will lead to finding out unprecedented H-E alloys and HE-BMGs.

Content from these authors
© 2013 The Japan Institute of Metals and Materials
feedback
Top