MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Molecular Dynamics Simulation of Ga Penetration along Al Grain Boundaries under a Constant Strain Rate Condition
Kayoung YunHo-Seok Nam
著者情報
ジャーナル フリー 早期公開

論文ID: M2013443

この記事には本公開記事があります。
詳細
抄録
While diverse fracture characteristics have been observed in liquid metal embrittlement (LME) depending on the solid–liquid metal pairs, the penetration of nanometer-thick liquid metal films along the grain boundary has been identified as one of the key mechanisms for embrittlement in many classical LME systems, such as Al–Ga, Cu–Bi and Ni–Bi. For example, liquid Ga quickly penetrates deep into grain boundaries in Al, leading to intergranular fracture under very small stresses. We report on a series of molecular dynamics simulations of liquid Ga in contact with an Al bicrystal under a constant strain rate. We identify the grain boundary dislocations that are nucleated at the grain boundary groove tip and climb down along the grain boundary during Ga penetration and characterize their atomic structures based on topological method.
著者関連情報
© 2014 The Japan Institute of Metals and Materials
feedback
Top