Constitution of Stable and Metastable Phase Diagrams for TmFeO$_3$-ScFeO$_3$ System by Undercooling Solidification Using the Containerless Technique*1

Junya Takasaki1,*2, Kazuhiko Kuribayashi2 and Shumpei Ozawa3

1Graduate School of Engineering, Chiba Institute of Technology, Narashino 275–0016, Japan
2Research Liaison Centre, Chiba Institute of Technology, Narashino 275–0016, Japan
3Department of Advanced Materials Science and Engineering, Chiba Institute of Technology, Narashino 275–0016, Japan

Spherical samples of Tm$_{1-x}$Sc$_x$FeO$_3$ were solidified from the undercooled melt under the containerless state using an aerodynamic levitation (ADL) furnace. The change of solidification behavior from double recalescence to single recalescence and powder X-ray diffraction (XRD) analysis of as-solidified samples revealed that metastable hexagonal LnFeO$_3$ (h-LnFeO$_3$) stabilizes with increasing of mole fraction of Sc. The reason for this stabilization was ascribed to the decrease of the difference in the liquidus temperatures of stable orthorhombic LnFeO$_3$ (o-LnFeO$_3$) and metastable h-LnFeO$_3$ phases. Annealing the as-solidified samples at 1473 K for 1 hour resulted in the two-phase coexistent states of of o–LnFeO$_3$ and garnet (c-A$_3$B$_5$O$_{12}$) at $0 < x < 0.3$, c-A$_3$B$_5$O$_{12}$ and h-LnFeO$_3$ at $0.3 < x < 0.5$ and h-LnFeO$_3$ and c-ScFeO$_3$ at $0.5 < x < 1.0$. Based on these results, we proposed the phase diagram between TmFeO$_3$ and ScFeO$_3$. [doi:10.2320/matertrans.M2017359]

(Received November 22, 2017; Accepted December 20, 2017; Published February 2, 2018)

Keywords: metastable phase, aerodynamics levitation, recalescence behavior, lanthanide iron perovskite

1. Introduction

Hexagonal LnFeO$_3$ (h-LnFeO$_3$, Ln: Eu–Lu) is attracting attention as a multi-ferroic material having both ferroelectric and (anti) ferromagnetic properties. However, the production method of a bulk sample is restricted to rapid solidification into undercooled melt since h-LnFeO$_3$ is a metastable phase. In fact, it is reported that h-LnFeO$_3$ is formed from the undercooled melt by a containerless solidification method. However, when other lanthanide ions, the ionic radii of which are larger than that of Lu$^{3+}$, are used, h-LnFeO$_3$ is rarely formed. The reason for this rarity is due to the melting temperature of the orthorhombic LnFeO$_3$ phase (o-LnFeO$_3$) except LuFeO$_3$ being much higher than that of the h-LnFeO$_3$ phase. That is, the degree of undercooling for o-LnFeO$_3$ is much larger than that for h-LnFeO$_3$. For this reason, even if the metastable h-LnFeO$_3$ phase is formed initially, o-LnFeO$_3$ that is nucleated heterogeneously on the interface between h-LnFeO$_3$ and the residual melt is crystallized with re-melting the h-LnFeO$_3$ phase. Therefore, in order to obtain the h-LnFeO$_3$ phase from the undercooled melt by using the containerless solidification method, it is indispensable for h-LnFeO$_3$ to be thermodynamically stabilized. Regarding the stability of h-LnFeO$_3$, Masuno et al.5 recently reported that substituting a part of Lu$^{3+}$ by Sc$^{3+}$ stabilizes h-LnFeO$_3$. This result suggests that decreasing the apparent ionic radius of Ln$^{3+}$ stabilizes the h-LnFeO$_3$ phase. However, it was also reported that substituting Ln$^{3+}$ by Sc$^{3+}$ facilitates other phases such as garnet and bixbyite to be formed.5 Therefore, to optimize the chemical composition at which h-LnFeO$_3$ may be stabilized, it is required to establish the stable and the metastable phase-diagrams between LnFeO$_3$ and ScFeO$_3$.

In the present investigation, using TmFeO$_3$ as a model material, in which typical double recalescence is observed and therefore h-LnFeO$_3$ is never frozen, we aimed to elucidate the influence of Sc substitution on the stabilization of h-LnFeO$_3$.

2. Experimental Procedure

The mixed powder of high purity (99.9%) Tm$_2$O$_3$, Sc$_2$O$_3$ and Fe$_2$O$_3$ that were weighed to be Tm$_{1-x}$Sc$_x$FeO$_3$ of approximately 100 mg were melted on a water-cooled copper hearth using a LD power-laser. Then, pulverizing the solidified ingot we melted and again solidified the powdered ingot on a water-cooled copper hearth into spherical samples, the diameter and mass of which are approximately 2 mm and 20 mg, respectively. These samples were processed by using an aero-dynamic levitation (ADL) furnace. As a levitating gas, high-purity oxygen was used. The temperature of the sample was monitored by a pyrometer, the measured wavelength and the sampling rate of which are 0.8–1.6 μm and 1 millisecond, respectively. The emissivity of samples was assumed to be 1.0, on the basis of the black-body approximation. The sample, after being completely melted, was solidified in a containerless state. A high-speed video (HSV, FASTCAM MC-MP, Photron) with a sampling rate of 2000 frames/s was used to record solidification process and surface conditions.

After grinding the solidified samples into 10 μm3 pieces, we investigated the crystal structure via X-ray diffraction (XRD, MiniFlex 600, Rigaku) using the CoK$_{α}$ line. The cross-sectional microstructure of the sample was observed using a scanning electron microscope (SEM, JSM-6010LA, JEOL). Furthermore, in order to investigate the thermal stability of the phase, we carried out annealing treatment for 1 hr at 1473 K in an electric furnace. The present investigation also aims to elucidate the relation among the stable phase, the metastable phase and their liquidus temperature. In achieving this aim, the post-recalescence technique is indispensable for stable and metastable phase diagrams of LnFeO$_3$. Further, the use of ADL furnace is indispensable for rare earth compounds. In the present investigation, the as-solidified samples were annealed at 1473 K for 1 hour. We investigated the phase diagram between TmFeO$_3$ and ScFeO$_3$.
ence temperature, T_{Pr}, is assumed to be the liquidus temperature of a related phase (Fig. 1(a)). In the case when this assumption is applied to the sample showing double recalescence, the spot-size (1 mm2) of the pyrometer is too large to evaluate T_{Pr} of the phase formed at the first recalescence (Fig. 1(b)). Therefore, based on the measured relation between the luminance and temperature at the liquid state, we regarded T_{Lum}, which is the temperature evaluated from the luminescence of the area corresponding the first recalescence, as the liquidus temperature of the metastable phase (Fig. 1(c)).

3. Experimental Results

3.1 As-solidified sample

Figure 2 shows a sequence of HSV images taken during recalescences in samples of (a) $x = 0.2$, (b) $x = 0.3$ and (c) $x = 0.5$, which are selected as typical examples showing characteristic surface patterns: That is, (a) Similar to YFeO$_3$ that was solidified from undercooled melt, a phase with higher luminance was formed subsequent to discoidal crystals, showing double recalescence; (b) The recalescence was single although discoidal crystals were formed in a similar process to (a); (c) The surface pattern changed to a spherical pattern, indicating the primary phase changed to a bixbyite-type crystal (c-ScFeO$_3$). Figure 3 shows the XRD
pattern of as-solidified samples. In the sample of $0 \leq x \leq 0.2$, in which double recalescence was observed, the XRD pattern showed the peak profile of only o-LnFeO$_3$. In the sample of $0.3 \leq x \leq 0.4$, on the other hand, double recalescence was not confirmed, and the peak profile showed only h-LnFeO$_3$ was formed. These results suggest that increasing the x value up to 0.3 stabilizes the h-LnFeO$_3$ phase. For the sample of $x = 0.5$ that showed a spherical surface, c-ScFeO$_3$ was identified in addition to h-LnFeO$_3$. Increasing the x value further, the peak-intensity of h-LnFeO$_3$ reduced and that of c-ScFeO$_3$ increased. In the sample of LnFeO$_3$, when h-LnFeO$_3$ is formed from the undercooled melt, the surface pattern shows polyhedral irrespective the number of recalescence.\(^3\) In the samples of $x \geq 0.5$, however, although the XRD pattern shows the formation of h-LnFeO$_3$, the surface of solidifying sample shapes was spherical. Considering that c-ScFeO$_3$ was confirmed in the samples of $x \geq 0.5$, the change of surface patterns suggests the primary phase changed to c-ScFeO$_3$ having a spherical surface from h-LnFeO$_3$ with polyhedral surface.

In order to clarify this point, using SEM we observed the microstructures of the as-solidified samples of $x = 0.3$ and $x = 0.5$, the surfaces of which are the polyhedral shape and spherical shape, respectively. Figure 4 shows the compositional image in backscattered electrons. In the sample of $x = 0.3$, the faceted microstructure (Fig. 4(a)) substantiates the formation of h-LnFeO$_3$. In the sample of $x = 0.5$, on the other hand, a dark dendritic pattern that corresponds to c-ScFeO$_3$ (Fig. 4(b)) verifies the primary phase changed to c-ScFeO$_3$.

As stated above, in the sample of $x = 0.3$, double recalescence did not occur, and the XRD pattern showed the formation of h-LnFeO$_3$. This is a proof for h-LnFeO$_3$ to be stabilized by Sc substitution.

Kuribayashi et al.\(^7\) reported that when the difference of melting temperatures between o-LnFeO$_3$ and h-LnFeO$_3$ is larger than 2%, double recalescence occurs. In fact, this criterion is satisfied in samples where Ln$^{3+}$’s other than Lu$^{3+}$ were used. According to their report, the reason for double recalescence not to occur in the sample of $0.3 \leq x \leq 0.4$ may be ascribed to the difference of liquidus temperatures between o-LnFeO$_3$ and h-LnFeO$_3$ reducing by less than 2%. Figure 5 shows T_{Pr} and T_{Lumi} as a function of x for samples solidified from undercooled melt, indicating that increasing the x value up to 0.3 stabilizes the h-LnFeO$_3$ by reducing the difference between T_{Pr} and T_{Lumi}. Namely, the liquidus temperature of o-LnFeO$_3$, crystallized at the second recalescence, decreases with the increase of the x value. On the other hand, T_{Lumi}, which corresponds to the liquidus temperature of the metastable h-LnFeO$_3$ phase, increases. As a result, in samples of $x \geq 0.2$, the difference of the liquidus temperatures between o-LnFeO$_3$ and h-LnFeO$_3$ decreases to below 2%.

3.2 Annealed samples

In order to investigate the thermal stability of the phase, as-solidified samples were annealed for 1 hr at 1473 K. Figure 6 shows the XRD pattern of the annealed samples. In
samples with \(x \) values of 0.1 and 0.2, not only \(o\text{-}LnFeO_3 \) but also the cubic garnet phase \((c\text{-}A_3B_5O_{12})\) was identified. Furthermore, in samples with \(x = 0.3 \), it was suggested that a large proportion of \(h\text{-}LnFeO_3 \) formed from the undercooled melt was transformed to \(c\text{-}A_3B_5O_{12} \) in the annealing process. Furthermore, in samples of \(0.4 \leq x \leq 0.6 \), \(c\text{-}A_3B_5O_{12} \) coexisted with \(h\text{-}LnFeO_3 \), and in the samples of \(0.6 \leq x \leq 0.7 \), \(c\text{-}A_3B_5O_{12} \) coexisted with not only \(h\text{-}LnFeO_3 \) but also \(c\text{-}ScFeO_3 \). On the other hand, in samples of \(0.8 \leq x \), \(c\text{-}A_3B_5O_{12} \) was not verified and \(h\text{-}LnFeO_3 \) coexisted with \(c\text{-}ScFeO_3 \).

Summarizing these data, increasing the substituting amount of \(Sc^{3+} \), the liquidus temperature of \(o\text{-}LnFeO_3 \) falls, yet the liquidus temperature of \(h\text{-}LnFeO_3 \) rises, and, as a result, \(h\text{-}LnFeO_3 \) stabilizes. Therefore, with the increase of the \(x \) value, the phase constitution of this system changed as shown follows:

\[
o\text{-}LnFeO_3 \Rightarrow o\text{-}LnFeO_3 \Rightarrow o\text{-}LnFeO_3 + c\text{-}ScFeO_3 \Rightarrow c\text{-}ScFeO_3, \text{ in as-solidified samples.}
\]

On the other hand, the phase constituent in annealed samples is as follows:

\[
o\text{-}LnFeO_3 \Rightarrow o\text{-}LnFeO_3 + c\text{-}A_3B_5O_{12} \Rightarrow c\text{-}A_3B_5O_{12} + h\text{-}LnFeO_3 \Rightarrow h\text{-}LnFeO_3 + c\text{-}ScFeO_3 \Rightarrow c\text{-}ScFeO_3.
\]

Table 1 shows the relation between the \(x \) values and the phase constitutions for as-solidified samples and annealed samples. In the next chapter, we will consider the stable and metastable phase diagrams of the \(TmFeO_3\text{-}ScFeO_3 \) system along with the cause for \(c\text{-}A_3B_5O_{12} \) to appear.

![Fig. 5](image)

Fig. 5 Estimated liquidus temperature of stable and metastable phase for \(Tm_{1-x}\text{-}ScFeO_3 \) samples that crystallized at the first and second recensions, in which \(T_{Lumi} \) that is the temperature estimated from the luminescence of the sample is assumed to corresponds to the liquidus temperature of the metastable phase.

![Fig. 6](image)

Fig. 6 Powder X-ray diffraction patterns of the \(Tm_{1-x}\text{-}ScFeO_3 \) samples annealed at 1473 K for 1 hr.

Discussion

The garnet structure that is a compact cubic structure represented by \([A_3](C_2)(B_3)O_{12} \) consists of three 8-coordination sites \([\] \), two 6-coordination sites \([] \) and three 4-coordination sites \((\) \). If the garnet structure appears in \(Tm_{1-x}\text{-}ScFeO_3 \), it should be \([L_{3(1-x)}\text{-}Sc_{3x}][Sc_2\text{-}Fe_2]O_{12} \) where Fe and Sc are equally coordinated in \([\] \), since \(Fe^{3+} \) that has the smallest ionic radius is considered to occupy the 4-coordination site and \(Ln^{3+} \) that has the largest ionic radius will occupy 8-coordination site. Therefore, for the sample of \(x = 0.25 \), we predict the existence of \([Lm_{0.75}][Sc_{0.25}Fe_{0.75}]O_{12} \) as the ideal garnet structure. In fact, the XRD pattern shows a garnet single phase in the annealed sample of \(x = 0.3 \). On the other hand, for samples of \(x < 0.25 \), the microstructure consists of \(o\text{-}LnFeO_3 \) and garnet. For example, when \(x = 0.2 \), the phase constitution of the sample is two phases of orthorhombic perovskite and garnet according to the equation:

\[
Ln_8Sc_2FeO_3=4/5Ln_{0.75}Sc_{0.25}Fe_{0.75}O_3+1/5LnFeO_3.
\]

When \(Sc^{3+} \) having an ionic radius smaller than \(Ln^{3+} \) increases, the mean ionic radius of \(Ln^{3+} \) that is partially substi-

<table>
<thead>
<tr>
<th>composition</th>
<th>phase constitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>as-solidified sample</td>
</tr>
<tr>
<td>0.0</td>
<td>(o\text{-}LnFeO_3)</td>
</tr>
<tr>
<td>0.1</td>
<td>(o\text{-}LnFeO_3)</td>
</tr>
<tr>
<td>0.2</td>
<td>(o\text{-}LnFeO_3 + c\text{-}A_3B_5O_{12})</td>
</tr>
<tr>
<td>0.3</td>
<td>(h\text{-}LnFeO_3)</td>
</tr>
<tr>
<td>0.4</td>
<td>(c\text{-}A_3B_5O_{12})</td>
</tr>
<tr>
<td>0.5</td>
<td>(c\text{-}A_3B_5O_{12} + h\text{-}LnFeO_3)</td>
</tr>
<tr>
<td>0.6</td>
<td>(c\text{-}ScFeO_3 + h\text{-}LnFeO_3 + c\text{-}A_3B_5O_{12})</td>
</tr>
<tr>
<td>0.7</td>
<td>(h\text{-}LnFeO_3 + c\text{-}ScFeO_3)</td>
</tr>
<tr>
<td>0.8</td>
<td>(h\text{-}LnFeO_3 + c\text{-}ScFeO_3)</td>
</tr>
<tr>
<td>0.9</td>
<td>(c\text{-}ScFeO_3)</td>
</tr>
<tr>
<td>1.0</td>
<td>(c\text{-}ScFeO_3)</td>
</tr>
</tbody>
</table>
tuted by Sc$^{3+}$ becomes too small to fit in the 8-coordination site. Therefore, the 8-coordination site destabilizes and Ln$^{3+}$ and Sc$^{3+}$ will occupy 7-coordination sites, forming h-LnFeO$_3$. Further increasing the substitution by Sc$^{3+}$ also destabilizes the 7-coordination site, and Ln$^{3+}$ and Sc$^{3+}$ will occupy 6-coordination sites, generating c-ScFeO$_3$. The XRD analysis well supports this interpretation.

Figure 7 shows stable and meta-stable phase diagrams of the TmFeO$_3$-ScFeO$_3$ system predicted on the basis of these results: That is, in the metastable phase-diagram (Fig. 7(a)), the regions of $0 < x < 0.3$ and $0.3 < x < 0.5$ are represented as the single-phase regions of o-LnFeO$_3$ and h-LnFeO$_3$, respectively. The region of $x > 0.5$, however, is represented as a two-phase region of h-LnFeO$_3$ and c-ScFeO$_3$. On the other hand, in the annealed state, XRD shows the regions of o-LnFeO$_3$ and h-LnFeO$_3$ are reduced due to the formation of the garnet phase.

When the phase diagram of the representative garnet phases of Y$_3$Al$_5$O$_{12}$ and Y$_3$Fe$_5$O$_{12}$ are compared, the different point is whether the melting temperature is congruent or incongruent: the former has a congruent melting temperature, while the latter shows an incongruent melting temperature.

The melting temperature of the garnet phase is congruent and incongruent.

Fig. 7 Hypothetical phase diagrams of TmFeO$_3$-ScFeO$_3$ system. (a) metastable state; (b) stable state assuming that c-Tm$_3$ScFe$_4$O$_{12}$ has a congruent melting point; (c) stable state assuming that c-Tm$_3$ScFe$_4$O$_{12}$ has an incongruent melting point.

5. Conclusion

In order to elucidate the influence of substitution of Ln$^{3+}$ by Sc$^{3+}$ on the stability of h-LnFeO$_3$, we carried out the experiment of rapid solidification from undercooled melt using ADL. In this experiment, we used Tm$_{1-x}$Sc$_x$FeO$_3$ as a model material.

In samples of $x = 0.1$ and 0.2, similar to the sample of $x = 0.0$, after the metastable hexagonal LnFeO$_3$ phase (h-LnFeO$_3$) nucleated as the primary phase, the stable orthorhombic LnFeO$_3$ phase (o-LnFeO$_3$) nucleated through double recalescence. Increasing the x value more than 0.2, the double recombination disappeared and h-LnFeO$_3$ was frozen as the stable phase. The reason for this stabilizing of h-LnFeO$_3$ is attributed to the decrease of the difference between the liquidus temperature of o-LnFeO$_3$ and that of h-LnFeO$_3$. Further increase of the x value changed the primary phase to bixbyite-type ScFeO$_3$. Annealing the as-solidified samples, the c-A$_3$B$_5$O$_{12}$ garnet phase appeared at the region of $x < 0.5$. In particular at $x = 0.3$, the microstructure of the sample consisted of the single phase of the garnet phase. Furthermore, a meta-stable phase diagram and stable phase diagram for the TmFeO$_3$-ScFeO$_3$ system were estimated based on these experimental results and interpretations.

Acknowledgement

This study was executed with support from a grant-in-aid for scientific research (16K06807, 16K14426). We would like to express our gratitude to everyone involved.

REFERENCES

241907.