MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Effect of Duty Cycle on Microstructure, Tungsten Content and Wear Resistance of Tungsten-Cobalt Films Prepared by Electrodeposition
Haipeng LuJunqi QinChangchun DiYuliang YangRuikun Huo
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: M2018196

Details
Abstract

By studying effect of different duty cycles on tungsten-cobalt film to improve its performances, tungsten-cobalt films were prepared on the surface of PCrNi3MoVA steel by electrodeposition under different duty cycles. The results show that grain size increases with increasing duty cycle but tungsten content, microhardness, film-based bond strength and TC(100) increase first and then decrease with increasing duty cycle. When the duty cycle is 30%, tungsten-cobalt films with highest tungsten content (43.37%), grain size (12.3 nm) and largest TC(100) (0.845) have highest microhardness (7.1 GPa) and strongest film-base bond (24 N), which results in lowest friction coefficient (0.31) and smallest wear rate (2 × 10−5 mm3N−1m−1) that is only 28.57% for the tungsten-cobalt film prepared under 100% duty cycle.

Content from these authors
© 2018 The Japan Institute of Metals and Materials
feedback
Top