MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Evaluation of Electric Current-Induced Improvement of Fracture Characteristics in SUS316
Sungmin YoonYasuhiro KimuraYi CuiYuhki TokuYang Ju
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: MT-M2020333

Details
Abstract

The application of high-density pulsed electric current (HDPEC) is one of the effective methods for the modification of material properties in metals. To evaluate fracture behavior modified by HDPEC, critical fracture parameters such as fracture strength, fracture toughness, and fracture profile of crack tip are important criteria. This work investigates the finite element analysis (FEA) based evaluation of improved fracture characteristics by the application of HDPEC in a SUS 316 austenite stainless steel. Tensile tests were first conducted to deduce the modified material properties with different conditions of HDPEC. A series of theoretical considerations was employed to estimate the modified fracture toughness. The relationship between critical fracture strength and critical crack length was numerically determined based on the estimated fracture toughness. The results in FEA showed that critical von Mises stress on the singularity at the crack tip increases as the effect of HDPEC increases. The evolution of increased fracture toughness with respect to conditions of HDPEC was specified. Crack opening profiles were simulated to assist the explanation. The evaluation of fracture parameters in this study proposes that the modified material properties by HDPEC play a positive role to resist crack propagation.

Fullsize Image
Content from these authors
© 2021 The Japan Institute of Metals and Materials
feedback
Top