MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Preparation and Electrochemical Properties of LiCoO2 Electrode Layer by Molten Salts on Mechanical Machined Li0.29La0.57TiO3 Solid Electrolyte
Hijiri OikawaTakanori YamamotoYoshinori Arachi
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: MT-Y2022002

Details
Abstract

An effect of surface area and microstructure of Li0.29La0.57TiO3 (LLTO) solid electrolyte on an electrochemical performance of LiCoO2 (LCO) as positive electrode in an all-solid-state Li secondary battery was examined. The surface of LLTO sintered body was machined mechanically by using a pico-second laser and obtained in various forms of LLTO. Then, LCO on the LLTO was prepared from molten salts as a starting material. The microstructural observation confirmed that LCO was formed on the surface of a laser-machined LLTO. A discharge capacity was enlarged with the amount of LCO loading. These results suggest that the LCO formed on LLTO by molten salts was active electrochemically regardless of various shapes of microstructures of the solid electrolyte.

 

This Paper was Originally Published in Japanese in J. Jpn. Soc. Powder Powder Metallurgy 69 (2022) 104–107.

Fullsize Image
Content from these authors
© 2022 Japan Society of Powder and Powder Metallurgy
feedback
Top