Phase Relation in the Titanium-Rich Region of the Ge–Si–Ti Ternary System

T. A. Jain, C. G. Huang, C. E. Ho and C. R. Kao*

Department of Chemical Engineering, National Central University, Chungli, Taiwan

The Ti-rich region of the Ge–Si–Ti ternary isotherm at 900°C was determined by metallography, X-ray diffraction, and electron microprobe analysis. The sample alloys were prepared by arc-melting. It was confirmed that at 900°C Ti₃Si and Ti₃Ge₂ form a continuous solid solution Ti₃(Si₁₋ₓGeₓ)₂ with the hP16 crystal structure. The lattice constants for Ti₃(Si₁₋ₓGeₓ)₂ are linear functions of the composition variable x. This continuous solid solution also exists at 1100°C. There is another solid solution Ti₂(Siₓ₋₁Geₓ), that has the same crystal structure as Ti₃Si (p32m), but this solid solution is stable only for x ≤ 0.44 at 900°C. It was also shown that there is not any other binary or ternary phase within the Ti–Ti₃Si–Ti₃Ge₂ triangular region except Ti₃(Siₓ₋₁Geₓ)₂ and Ti₃(Siₓ₋₁Geₓ). In this region, there is one three-phase field Ti + Ti₃(Siₓ₋₁Geₓ)₂ + Ti₃(Siₓ₋₁Geₓ), and the compositions of these three phases are Ti₃(Siₓ₋₁Geₓ)₂, Ti₃Ge₂, and Ti₃Si, respectively. In addition, there are three two-phase fields within this region: Ti₃(Siₓ₋₁Geₓ)₂ + Ti + Ti₃(Siₓ₋₁Geₓ), Ti + Ti₃(Siₓ₋₁Geₓ)₂, and Ti + Ti₃(Siₓ₋₁Geₓ).

(Received December 7, 1998)

Keywords: ternary phase diagram, titanium silicides, titanium germanides, titanium germanostilicides, intermetallic compounds

I. Introduction

Silicon-germanium alloys have been increasingly used in Si-based electronic devices to increase the device performance. As in conventional Si-based devices, the formation of stable metal-semiconductor interfaces in these SiGe-based devices is a key issue in device manufacturing. Titanium disilicide is a strong candidate for the metallization contact material. One approach of forming the TiSi₂ layer is through the solid-state reaction of Ti with SiGe films. An experimental Ge–Si–Ti phase diagram will be very helpful for understanding the solid-state reaction between Ti and SiGe.

The three constituent binary phase diagrams for Ge–Si–Ti can be found in the literature, and are all well established. However, the literature on the Ge–Si–Ti ternary phase diagram is very scarce, and is limited to the SiGe-rich region. Only the trapezoid region delineated by pure Si, pure Ge, TiGe₂, and TiSi₂ had been studied. The two compounds TiGe₂ and TiSi₂ have the same crystal structure (of24) and very similar lattice constants (within 6%). As a consequence, they form a continuous solid solution at 900°C, and possibly at other temperatures. Germanium and Si also form a continuous solid solution at all temperatures. Other than the TiGe₂–TiSi₂ solid solution and the Ge–Si solid solution, there is not any binary or ternary phase within the Si–Ge–TiGe₂–TiSi₂ trapezoid region at 900°C. Between the two solid solutions is a two-phase field. The tie-lines for this two-phase field had been determined. No other information on ternary phase equilibrium can be found in the literature. The objective of this study is to experimentally determine the Ti-rich region of the Ge–Si–Ti ternary isotherm at 900°C.

According to the Ge–Ti binary phase diagram, the most Ti-rich intermetallic compound is Ti₅Ge₇. This compound has the hP16 structure (prototype Mn₃Si) with a = 0.7563(2), c = 0.5228(2) nm. In the Si–Ti binary system, there is also a Ti₃Si compound with the same hP16 structure and a = 0.74610(3) nm, c = 0.51508(1) nm. Since Ti₅Ge₇ and Ti₃Si have the same crystal structure and very similar lattice constants (within 1.5%), it is expected that these two phases may form a...
continuous solid solution Ti₃(Si₁₋ₓGeₓ)₃. If this solid solution exists, this single phase field will then separate the Ge–Si–Ti isotherm into two regions, with one region that has Ti-content richer than 62.5 at% and one leaner than 62.5 at%. The scope of this study is limited to alloys with Ti-content that are equal to or higher than 62.5 at%. In addition to the two binary phases Ti₃Ge and Ti₃Si, there is another binary phase Ti₃Si with the tP32 structure (prototype Ti₃P) in the region of current interests²⁰. No ternary compound has been reported in this region in the literature.

II. Experimental Procedure

Alloys with ten different compositions, numbered 1 to 10 and listed in Table 1, were prepared by arc-melting. The locations of these alloys on the Ge–Si–Ti diagram are marked in Fig. 1. These alloys were made from 99.9999% pure Si, 99.9999% pure Ge, and 99.99% pure Ti. The total mass of each alloy was about 0.6 g. These alloys were arc-melted with a non-consumable tungsten electrode in an Ar atmosphere. The arc-melting chamber was evacuated and back-filled with high-purity Ar several times before arc-melting to avoid O and N contamination. Each alloy was re-melted at least four times to en-

<table>
<thead>
<tr>
<th>Alloy No.</th>
<th>Original composition (mole fraction)</th>
<th>Heat treatment</th>
<th>Metallography</th>
<th>XRD</th>
<th>EPMA (mole fraction)</th>
<th>Phase(s)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>Four small peaks are not identified in XRD. Some XRD peaks appear asymmetric or split into two peaks.</td>
</tr>
<tr>
<td>1H</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>1100°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>Some XRD peaks appear asymmetric or split into two peaks.</td>
</tr>
<tr>
<td>2</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>Some XRD peaks appear asymmetric or split into two peaks.</td>
</tr>
<tr>
<td>2H</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>1100°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti is very small, and Ti could disappear completely upon longer annealing. (compare alloys 4 & 4S)</td>
</tr>
<tr>
<td>3</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti is large compared to alloy 4.</td>
</tr>
<tr>
<td>4</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>Similar to alloy 6. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium. The amount of Ti₃(Si₁₋ₓGeₓ)₃ is more than that in alloy 6S. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium.</td>
</tr>
<tr>
<td>5</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti₃(Si₁₋ₓGeₓ)₃ is more than that in alloy 6S. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium.</td>
</tr>
<tr>
<td>6</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti₃(Si₁₋ₓGeₓ)₃ is more than that in alloy 6S. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium.</td>
</tr>
<tr>
<td>7</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti₃(Si₁₋ₓGeₓ)₃ is more than that in alloy 6S. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium.</td>
</tr>
<tr>
<td>8</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti₃(Si₁₋ₓGeₓ)₃ is more than that in alloy 6S. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium.</td>
</tr>
<tr>
<td>9</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti₃(Si₁₋ₓGeₓ)₃ is more than that in alloy 6S. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium.</td>
</tr>
<tr>
<td>10</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>900°C 500 h</td>
<td>single phase</td>
<td>Ti₃(Si₁₋ₓGeₓ)₃</td>
<td>Ti₃77.5Si₃0.25Ge₆2.5</td>
<td>Phase(s)</td>
<td>The amount of Ti₃(Si₁₋ₓGeₓ)₃ is more than that in alloy 6S. Probably is a non-equilibrium alloy, and is single-phase Ti₃(Si₁₋ₓGeₓ)₃ at equilibrium.</td>
</tr>
</tbody>
</table>
sure homogeneity. Each alloy was then weighted again to monitor weight change during the arc-melting. In every case, the weight decrease was negligible to change the alloy composition. Each alloy was then sealed in an evacuated (700 mPa) quartz tube, and heat treated at 900°C. The annealing times for the alloys are given in Table 1. Alloys 1H, 2H, and 3H, which have the same compositions as alloy 1, 2 and 3 respectively, were annealed at 1100°C, instead of 900°C.

After annealing, each alloy was sectioned into two halves by a low-speed diamond saw, with one half polished for metallographic examination and electron-microprobe analysis (EPMA), and the other half ground into powder for X-ray powder diffraction measurement (XRD). An electron-microprobe, operated at 15 kV, was used to determine the phase compositions. The measured X-ray was Kα in each case, and the standards used were pure Si, Ge, and Ti respectively. In microprobe measurement, the concentrations of Si, Ge, and Ti were measured independently, and the total weight percentage was within 100±1% in each case. For every phase, at least four measurements were made and the average value was reported. Care had been taken to ensure that the grains being measured were large enough to avoid generating and collecting signals from the neighboring grains. It was estimated that the accuracy of EPMA measurements is better than 2 at%. The XRD measurements were done on a diffractometer using the Cu Kα radiation. In measuring the lattice constants, Si powder was added to serve as the internal standard.

III. Results and Discussion

The characterization results of this study are summarized in Table 1. These results lead to the isotherm shown in Fig. 2. The region between the Ti$_3$Si–Ti$_5$Ge$_3$ line and the Ti$_3$Si–TiGe$_2$ line is still undetermined, and is left blank. There is a continuous solid solution Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$ between Ti$_3$Si$_3$ and Ti$_5$Ge$_3$ at 900°C (and 1100°C). This solid solution is represented by a heavy solid line connecting Ti$_3$Si$_3$ and Ti$_5$Ge$_3$. There is a three-phase region Ti$_3$Si$_3$(Si$_{0.22}$Ge$_{0.78}$)$_2$ + Ti$_5$Si$_3$(Si$_{0.25}$Ge$_{0.75}$) above this solid solution. The compound Ti$_3$Si can dissolve some Ge to become a solid solution Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$, but the stability range for this solid solution is limited since there is no stable Ti$_5$Ge$_3$. The rest of the region includes three two-phase fields: Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$ + Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$, Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$, and Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$. The thin lines passing through alloys 4 and 10 are tie-lines for the two-phase regions. A discussion of the experimental results and their relations to Fig. 2 is presented below.

It is confirmed by metallography and XRD of alloys 1–3 that Ti$_3$Si$_3$ and Ti$_5$Ge$_3$ form a continuous solid solution Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$ at 900°C. From metallographic observations, alloys 1–3 have very similar microstructures, and only one phase was observed. Figures 3(a) and (b) are an optical micrograph and a secondary electron micrograph respectively for alloy 2. The dark grain boundaries in Fig. 3(a) are not the precipitates of a sec-

Fig. 2 The experimentally determined Ge–Si–Ti isotherm at 900°C (in atomic percent). There is a continuous solid solution between Ti$_3$Si$_3$ and Ti$_5$Ge$_3$. The thin lines passing through alloys 4 and 10 are tie-lines for the two phase regions.

Fig. 3 (a) An optical micrograph for alloy 2. This alloy is a single-phase Ti$_5$Si$_3$(Si$_{1-x}$Ge$_x$)$_2$. The dark grain boundaries are not precipitates of a second phase, but are optical artifacts due to de-focus of the image. (b) A secondary electron micrograph for the same alloy.
Fig. 4 X-ray powder diffraction patterns for alloys 1, 2 and 3. All the peaks, except those marked with ‘?’ are from hP16 Ti₅(Si₁₋ₓGeₓ)₃. The source for these small peaks is unclear. Some of the peaks appear asymmetric or split into two peaks. This indicates that alloys 1–3 have not reached complete homogeneity in composition. The radiation used was Cu Kα₁.

Fig. 5 The lattice constants a and c of Ti₅(Si₁₋ₓGeₓ)₃ as a function of the composition variable x.

ond phase, but are optical artifacts due to de-focus of the image. The sample was etched with a 50 vol% NH₄OH–H₂O₂ solution to enhance the contrast, and this etching removed materials from the grain boundaries and made the grain boundaries not level with the grains. Figure 3(b) shows that there is no second phase at the grain boundaries. Figure 4 shows the XRD patterns for alloys 1, 2, and 3. All the peaks, except those marked with ‘?’ are from a phase with the hP16 structure, as is the case with that of Ti₅Si₅ or Ti₅Ge₅. This suggests the existence of a solid solution phase Ti₅(Si₁₋ₓGeₓ)₃ with the hP16 structure. In Fig. 4, some of the peaks appear asymmetric or split into two peaks. This indicates that alloys 1–3 have not reached complete homogeneity in composition. This is probably because the annealing temperature was low compared to the melting temperature of Ti₅Si₅ (2130°C) and Ti₅Ge₅ (1980°C), and a much longer annealing time is required to bring these alloys to homogeneity in composition. Moreover, in alloy 1 of Fig. 4, there are four very small peaks (marked with ‘?’) that cannot be attributed to any apparent phase. As more Ge atoms are incorporated into Ti₅(Si₁₋ₓGeₓ)₃, the lattice constants increase due to the larger Ge atom size compared to that of Si. As can be seen in Fig. 4, this increase in unit cell dimension makes the diffraction peaks shift toward lower 2θ. The lattice constants a and c for alloys 1, 2, and 3 are plotted against x in Fig. 5(a) and (b) respectively. The lattice constants for pure Ti₅Si₅ and Ti₅Ge₅ are taken from the literature. As can be seen in Fig. 5, the lattice constants are linear functions of the composition, and therefore follow Vegard’s law. From EMPA measurements (Table 1), it was found that the compositions of the alloys after annealing were essentially the same as the starting compositions, indicating there was no material loss during sample preparation and analysis. Although the asymmetric peaks and peak-splitting in XRD suggest that there is a certain degree of inhomogeneity in compositions, the EMPA measurements did not detect any appreciable difference in composition at different locations on the samples. This is probably because the composition difference is smaller than the accuracy of EPMA (about one or two at%).

The Ti₅(Si₁₋ₓGeₓ)₃ solid solution exists not only at 900°C, but also at 1100°C. This is supported by the results from alloys 1H, 2H and 3H which were annealed at 1100°C. The metallography, XRD, and EMPA results of these alloys were the same as those of alloys 1, 2, and 3 except that the extent of asymmetric peaks and peak-splitting in XRD was less apparent.

According to the Ti–Si and the Ti–Ge binary phase diagrams, Ti₅Si₅ has a range of homogeneity as wide as 4 at% while Ti₅Ge₅ is a line compound. In this study, we did not attempt to determine the range of homogeneity for the solid solution phase Ti₅(Si₁₋ₓGeₓ)₃. In Fig. 2, Ti₅(Si₁₋ₓGeₓ)₃ is represented by a heavy line, but it should be stressed that the actual homogeneity of Ti₅(Si₁₋ₓGeₓ)₃ might be wider than this line at some compositions.

Alloys 4 and 4S have the same composition, but alloy 4S was annealed for a shorter time (300 h, compared to 600 h for alloy 4). The XRD pattern for alloy 4 is shown in Fig. 6. Diffraction peaks from three phases, Ti₅(Si₁₋ₓGeₓ)₃, and Ti₅(Si₁₋ₓGeₓ)₃, were present. From the relative peak heights, one can conclude that the amount of Ti is quite small. The compound Ti₅(Si₁₋ₓGeₓ)₃ has the same crystal structure as that of Ti₅Si (tP32, prototype Ti₅P). Figures 7(a) and (b) are optical micrographs for alloy 4S and 4 respectively. Three phases, Ti₅(Si₁₋ₓGeₓ)₃, and Ti₅(Si₁₋ₓGeₓ)₃ are present in both micrographs, but the amount of Ti in alloy 4 is much
equilibrium phases at this composition are probably only T_5($Si_{1-x}Ge_x$)$_3$ and T_3($Si_{1-x}Ge_x$). The compositions for T_5($Si_{1-x}Ge_x$)$_3$ and T_3($Si_{1-x}Ge_x$) in alloy 4, determined by using EPMA, are $T_{0.65}Si_{0.35}Ge_{0.05}$ and $T_{0.75}Si_{0.25}Ge_{0.05}$ respectively. These two compositions correspond to T_5($Si_{0.8}Ge_{0.12}$) and T_3($Si_{0.8}Ge_{0.12}$) respectively. Since the amount of Ti in alloy 4 is quite small, we can assume that the compositions for alloy 4 are very close to the tie-line composition for an equilibrium alloy with the same overall composition. The tie-line determined this way is shown in Fig. 2 as a thin line. As can be seen in Fig. 2, this tie-line passes through the composition point of the starting alloy, indicating that the assumption is reasonable. In the Ti–Ge binary system, there is no stable T_1Ge phase like T_1Si, but the existence of T_5($Si_{1-x}Ge_x$) indicates that T_1Si is able to dissolve some Ge. The extent of Ge solubility in T_1Si will be established in the discussion for alloys 7 and 9.

Alloy 5 is very similar in microstructure to alloys 6 (600 h) and 6S (300 h), and these three alloys are all three-phase mixture of T_5($Si_{1-x}Ge_x$)$_3$ + T_3($Si_{1-x}Ge_x$) + Ti according to the metallography and XRD results. Figures 8(a) and (b) are the optical micrographs for alloys 6S and 6, respectively. It can be seen that the amounts of T_5($Si_{1-x}Ge_x$)$_3$ and Ti in alloy 6 are less than those in alloy 6S. In other words, longer annealing reduced the amounts of T_5($Si_{1-x}Ge_x$)$_3$ and Ti, and increased the amount of T_3($Si_{1-x}Ge_x$). This leads us to assume that alloys 6, 6S, and 5 are non-equilibrium alloys. At equilibrium, these alloys probably would be single-phase T_5($Si_{1-x}Ge_x$)$_3$. The compositions determined by EPMA are given in Table 1. It is worth noting that, in alloys 5, 6, and 6S, the compositions of the T_5($Si_{1-x}Ge_x$)$_3$ phase are nearly the same as the original alloy compositions. From the results of alloy 4, it had been established that T_5($Si_{0.8}Ge_{0.2}$) is stable, but the original composition of alloy 5 is exactly T_5($Si_{0.8}Ge_{0.2}$). In other words, alloy 5 is located in the T_5($Si_{1-x}Ge_x$)$_3$ single-phase field. Moreover, according to the results for alloy 7 and 9 (see below), the compound T_3($Si_{1-x}Ge_x$) is stable for y as high as 0.44. Since the original composition of alloy 6 (and 6S) has a y value smaller than 0.44, alloy 6 (and 6S) is also within the T_5($Si_{1-x}Ge_x$)$_3$ single-phase field. These observations also lead us to consider alloys 5, 6, and 6S non-equilibrium alloys. In Fig. 2, we have assumed that alloys 5, 6, and 6S are all within the T_5($Si_{1-x}Ge_x$)$_3$ single-phase field. In the Si–Ti binary system, there is a peritectoid Ti + T_5Si = T_1Si at 1170°C. This invariant reaction is probably the reason why alloys 5, 6, and 6S had such a difficulty in reaching equilibrium.

Alloy 7 is a three-phase mixture of T_5($Si_{1-x}Ge_x$)$_3$, T_3($Si_{1-x}Ge_x$)$_3$, and Ti. Figure 9 is a secondary electron micrograph for this alloy. The microstructure has the characteristics of an alloy having reached its equilibrium state, i.e. smooth and round phase boundaries. The compositions for these three phases are $T_{0.6}Si_{0.4}Ge_{0.0}$, $T_{0.6}Si_{0.3}Ge_{0.2}$, and $T_{0.7}Si_{0.3}Ge_{0.1}$. These three compositions provide a guide for locating the three vertices of the tie-triangle.

Fig. 6 The XRD pattern for alloy 4. The diffraction peaks from hP16 T_3($Si_{1-x}Ge_x$)$_3$ and tP32 T_5($Si_{1-x}Ge_x$)$_3$ are identified. In addition, there are three small peaks from Ti. The radiation used was Cu Kα.

Fig. 7 (a) An optical micrographs for alloy 4S (300 h). (b) An optical micrographs for alloy 4 (600 h). In both micrographs, three phases, T_5($Si_{1-x}Ge_x$)$_3$, and T_5($Si_{1-x}Ge_x$)$_3$ are present, but the amount of Ti in alloy 4 is much smaller compared to that in alloy 4S. This observation suggests that Ti is possibly not an equilibrium phase and will eventually disappear upon further annealing. In other words, the smaller compared to that in alloy 4S. This observation leads us to assume that Ti is not an equilibrium phase at this composition and will eventually disappear completely upon longer annealing. In other words, the
Figure 8 is an optical micrograph for alloy 6S. The three phases present are Ti, Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$, and Ti$_2$(Si$_{1-x}$Ge$_x$) according to the XRD result. The amount of Ti$_2$(Si$_{1-x}$Ge$_x$) is small compared to the other two phases, indicating this alloy is close to the phase boundary of the tie-triangle. The compositions for Ti and Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$ are determined to be Ti$_{1.90}$Ge$_{0.04}$ and Ti$_{1.83}$Si$_{0.08}$Ge$_{0.29}$ respectively. These two compositions have two of the three vertices of the tie-triangle. These two compositions are very close to the corresponding ones for alloy 7. The composition of Ti$_2$(Si$_{1-x}$Ge$_x$) could not be determined accurately since its particle sizes are too small for accurate EPMA measurement.

Figure 10 is an optical micrograph for alloy 8. The three phases present are Ti, Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$, and Ti$_2$(Si$_{1-x}$Ge$_x$) according to the XRD result. The amount of Ti$_2$(Si$_{1-x}$Ge$_x$) is small compared to the other two phases, indicating this alloy is close to the phase boundary of the tie-triangle. The compositions for Ti and Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$ are determined to be Ti$_{1.90}$Ge$_{0.04}$ and Ti$_{1.83}$Si$_{0.08}$Ge$_{0.29}$ respectively. These two compositions have two of the three vertices of the tie-triangle. These two compositions are very close to the corresponding ones for alloy 7. The composition of Ti$_2$(Si$_{1-x}$Ge$_x$) could not be determined accurately since its particle sizes are too small for accurate EPMA measurement.

Figure 11 is a secondary electron micrograph for alloy 9. In addition to Ti and Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$, there is a small amount of Ti$_2$(Si$_{1-x}$Ge$_x$) present in this alloy, suggesting that this alloy is very close to the Ti + Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$ two-phase field. Alloy 9 has excellent mechanical properties. It is very tough and has a Vickers hardness of 630HV (1 kg load). Alloys 7, 8, and 9 are all in the three-phase field. Based on the EPMA results from these three alloys, we estimate the compositions of the three vertices of the tie-triangle are Ti$_{1.90}$Si$_{0.03}$Ge$_{0.01}$, Ti$_{1.83}$Si$_{0.08}$Ge$_{0.29}$, and Ti$_{1.27}$Si$_{0.24}$Ge$_{0.29}$.

Alloy 10 shown in Figure 12 is clearly two-phase. The XRD measurement confirmed that it is a Ti+
Ti$_{13}$(Si$_{1-x}$Ge$_x$) two-phase alloy. The compositions of these two phases are Ti$_{0.90}$Si$_{0.01}$Ge$_{0.99}$ and Ti$_{0.76}$Si$_{0.16}$Ge$_{0.08}$ according to the EPMA measurement. From these two compositions, a tie-line can be established for the Ti$+$Ti$_{13}$(Si$_{1-x}$Ge$_x$) two-phase region. This tie-line is shown in Fig. 2 with a thin line. As can be seen in this figure, this tie-line passes through the composition point of the starting alloy, indicating no material was lost during the arc-melting and other processing steps.

IV. Summary

It was confirmed that at 900°C Ti$_5$Si$_3$ and Ti$_3$Ge$_3$ form a continuous solid solution Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$ with the hP16 crystal structure (Fig. 2). The lattice constants for Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$ are linear functions of the composition variable x. This continuous solid solution also exists at 1100°C. There is another solid solution Ti$_5$(Si$_{1-x}$Ge$_x$) that has the same crystal structure as Ti$_5$Si (tP32), but this solid solution is stable only for y ≤ 0.44 at 900°C. It is also shown that, other than Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$ and Ti$_5$(Si$_{1-x}$Ge$_x$)$_2$, there is neither binary nor ternary phase within the Ti–Ti$_5$Si–Ti$_3$Ge$_3$ triangular region. There is one three-phase field Ti$+$Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$+Ti$_5$(Si$_{1-x}$Ge$_x$)$_2$, and the compositions of the three vertices of the tie-triangle are Ti$_{0.90}$Si$_{0.01}$Ge$_{0.99}$, Ti$_{0.68}$Si$_{0.18}$Ge$_{0.04}$, and Ti$_{0.75}$Si$_{0.14}$Ge$_{0.01}$, respectively. In addition, there are three binary phase fields: Ti$+$Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$, Ti$_5$(Si$_{1-x}$Ge$_x$)$_3$+Ti$_5$(Si$_{1-x}$Ge$_x$)$_2$, and Ti$+$Ti$_5$(Si$_{1-x}$Ge$_x$)$_2$.

Acknowledgment

The authors wish to thank Professor S. W. Chen of National Tsing Hua University for alloy arc-melting, and National Science Council of R.O.C. for the financial support of this study through grants No. NSC87-2216-E-008-006 and NSC88-2216-E-008-010.

REFERENCES