Erratum


1. pp. 71 to 74
“Determination of Trace Amount of Gaseous Elements in Iron and Steel”
Hisao Yasuhara, Makoto Shimura, Keiichi Yoshioka and Kenji Abiko
(Received 1999; In Final Form 1999)

and

2. pp. 233 to 237
“Why Do We Study Ultra-High Purity Base Metals?”
Kenji Abiko
(Received 1999)

In the above papers, mistakes were discovered after publication. The corrections are as follows.
1. (Received August 6, 1999; In Final Form September 28, 1999)
2. (Received December 28, 1999)

Announcement

〈Call for Papers〉

Special Issue: “Recent Progress in Understanding of Materials Fracture”

The Editorial Committee of Materials Transactions, JIM is planning to publish a Special Issue on “Recent Progress in Understanding of Materials Fracture” as January 2001.

The Committee would like to invite many contributions of original articles from many countries for this special issue. Objective and topics of coverage are as follows:

The research of materials fracture has highly interdisciplinary nature, so that various kinds of approaches have been attempted not only from engineering standpoints but also from basic science, and much progress has been achieved. In particular, owing to newly developed experimental devices and powerful computational methods in recent years, atomistic-scale studies demonstrate an outstanding advance. However, it is still remained as an unsolved problem that how those studies in atomistic scales are linked with various fracture phenomena observed in macro-scale.

In this special issue, recent progress in the understanding of materials fracture will be presented with the aim at establishing linking scales between atomistic structure and macroscopic behavior in materials fracture. This will involve various kinds of subjects or categories of fracture (e.g. ductile, brittle, fatigue, impact, hydrogen, environmental, interfacial, metals, ceramics, semi-conductors, composites, theoretical, experimental, simulations etc.).

a. Atomistic or mesoscopic aspect of fracture-modeling, simulation and observations
b. Linking scales between atomistic and macroscopic studies on fracture
c. Interaction of a crack with lattice defects and its effect on fracture
d. Brittle-ductile behavior and crack tip processes
e. Hydrogen embrittlement and environmental effects on fracture
f. Interfacial fracture and role of impurities
g. Fundamentals of fatigue and related phenomena
h. Microstructure and fracture of metals, intermetallics, ceramics and composites
i. Impulsive loading and dynamic fracture
j. Fracture statistics-instability, fractal and self-organized phenomena