Magnetic levitation performance of miniaturized magnetically levitated motor with 5-DOF active control

Masahiro OSA*, Toru MASUZAWA*, Takuya SAITO* and Eisuke TATSUMI**

*Dept. of Mechanical Engineering, Ibaraki University
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
E-mail: masahiro.osa.630@vc.ibaraki.ac.jp

**Dept. of Artificial Organs, National Cerebral and Cardiovascular Center Research Institute
5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan

Received: 31 December 2016; Revised: 2 May 2017; Accepted: 28 July 2017

Abstract
Mechanical circulatory support (MCS) therapy plays a significant role in an alternative therapy of heart transplants for pediatric heart disease patients. However, continuous flow rotary MCS devices for pediatric patients are still undergoing development, and have not been clinically available technology. Technical difficulties, such as high durability, better blood compatibility and miniature device size, prevent the pediatric MCS devices development. In this study, a double stator axial gap maglev motor for pediatric MCS device has been developed. The maglev motor has two identical motor stators, and a levitated rotor impeller which is aligned between the stators. The levitated rotor impeller is fully suspended with 5-degrees of freedom (5-DOF) active control. A double stator mechanism enhances motor torque production. A miniaturized maglev motor was designed and developed based on FEM magnetic field analysis for use in implantable ventricular assist devices (VADs). The developed maglev motor has two 22 mm and 33 mm diameters and heights. This paper is an initial report on the magnetic levitation and rotation performance of the miniaturized maglev motor. The developed maglev motor impeller was magnetically levitated and rotated with the 5-DOF active control. The oscillation amplitudes (x, y and z) and inclination angles (θx and θy) of the levitated rotor impeller were then evaluated in both air and water. The developed maglev motor achieved non-contact rotation up to 1600 rpm in air and 4500 rpm in water, respectively. The oscillation amplitudes and inclination angles were sufficiently suppressed in water due to fluid damping. After these experiments, a magnetic circuit of the maglev motor was modified in order to achieve further stable levitation. The developed maglev motor then indicated potential to achieve the practical use of maglev rotary pediatric VAD.

Keywords: Maglev motor, Double stator, 5-DOF active control, Ventricular assist device, Pediatric

1. Introduction

Severe heart disease treatment using mechanical circulatory devices have been the alternative therapy of heart transplants, due to the shortage of donor hearts. Continuous flow ventricular assist devices (VADs) which have a rotating impeller in the pump cavity accelerated downsized VADs development and contributed to the successful use of mechanical circulatory devices in adult heart failure patients. Currently, there have been increasing research interest in VADs for pediatric patients under ten years of age (Takatani, et al, 2005). However, few devices are undergoing development in the world, due to difficulties in completing design requirements: high mechanical durability, better blood compatibility, miniature device size and wide operating speed range. In 2008, a National Heart, Lung and Blood Institute issued Pumps for Kids, Infants, and Neonates (PUMPKIN) program to provide support to pediatric mechanical circulatory support devices development (Baldwin, et al, 2006, Noh, et al, 2005). Currently, a continuous flow axial flow pediatric VAD which is named Jarvik2000 is undergoing development in U.S (Gibber, et al, 2010). The Jarvik2000 device is successfully downsized up to 14 cc by employing a mechanical pivot bearing that is soaking in blood. However, the mechanical bearings of circulatory support devices still have several problems, such as low mechanical durability due to mechanical friction, blood clotting and blood cell distraction caused by heat generation.
and high share stress at mechanically contacting region. In contrast, due to removing the need for contact bearing, magnetically levitated rotary VADs have significant advantages such as long life expectancy, low thrombosis, less hemolysis and high-speed operation compare to conventional blood pumps with mechanical bearings and seals contacting with the blood (Hoshi, et al, 2006, Timms, et al, 2011, Yamoto, et al, 2009). In this study, a tiny double-stator axial gap type magnetically levitated motor that can control 5 degrees of freedom (5-DOF) of rotor impeller postures have been developed for use in pediatric continuous flow rotary VAD. In 2012, novel 5-DOF control principle was proposed, and verified with 3D FEM magnetic field analysis (Osa, et al, 2012a). A first prototype maglev pediatric VAD with a 5-DOF controlled maglev motor which has diameter of 28 mm and height of 41 mm was developed in 2013. Stable magnetic suspension with high speed rotation up to 5000 rpm and sufficient pump characteristics of the developed pediatric VAD was indicated in 2014 (Osa, et al, 2015). Since 2015, further miniaturization of the 5-DOF controlled maglev motor has been carried out to develop an implantable maglev VAD applicable to pediatric patients under ten years of age (Osa, et al, 2016). In this paper, magnetic levitation performance of the further miniaturized maglev motor with 5-DOF active control concept was investigated.

2. Materials and Methods
2.1 Structure and control principle of 5-DOF controlled self-bearing motor

The proposed 5-DOF controlled magnetically levitated motor is an axial gap type permanent magnet synchronous motor. The motor has a top stator, a bottom stator and a levitated rotor as shown in Fig. 1. The top stator and bottom stator have a completely identical geometry. The levitated rotor is axially sandwiched between the top stator and the bottom stator. A double stator mechanism enhances a rotating torque production and achieves the 5-DOF active control of levitated rotor postures. The motor can generate axial suspension force and rotating torque with a single rotating magnetic field by utilizing vector control algorithm (Asama, et al, 2013; Nguyen, et al, 2011; Osa, et al, 2012b; Ueno, et al, 2000). An axial position (z) of the levitated rotor is actively controlled by field strengthening and field weakening as shown in Fig. 2. A rotating speed (ωr) of the rotor is regulated by conventional q-axis current control. Inclination angles (θx and θy) and radial positions (x and y) of the levitated rotor can be controlled with P ± 2 pole algorithm. In this theory, two rotating magnetic fields are assumed to be distributed in the air gap. One is a permanent magnet magnetic field which has pole number of P. The other is P plus or minus 2 pole magnetic field produced by the stator windings. The axial gap motor can simultaneously produces a restoring torque and a radial suspension force by generating the control magnetic field based on P ± 2 pole algorithm (Osa, et al, 2012a). The restoring torque around y-axis and the radial suspension force in x direction can be produced independently with

Fig. 1 Structure of proposed 5-DOF controlled maglev motor.

Fig. 2 Axial suspension force production with field strengthening control and field weakening.

Fig. 3 Independent control of restoring torque and radial suspension force with P ± 2 pole algorithm.
double stator mechanism as shown in Fig. 3. The restoring torque can be produced when both stators produce torque in the same direction; the radial forces produced by stators cancel each other. In contrast, the radial suspension force can be generated when the restoring torque produced by the top stator and the bottom stator is regulated in opposite direction. In a similar manner, the inclination control around x-axis and the radial position control in y direction are available. Consequently, the magnitude and the direction of the restoring torque and the radial suspension force can be regulated by changing excitation current supplied to the top stator and the bottom stator.

2.2 Miniaturized motor design with 3D FEM magnetic field analysis

2.2.1 Identification of required motor torque and suspension force characteristics

The pediatric VAD requires a maximum output power of 0.5 W to produce flow rates of 0.5-1.5 L/min against a head pressure of 100 mmHg at rotating speeds of 3500-4500 rpm. Assuming a hydraulic efficiency of 20% in pediatric circulation support, the maglev motor has to generate an output power up to 2.5 W. A required torque of the maglev motor is calculated to be 5.3 mNm at the rated rotating speed of 5000 rpm. With a double stator mechanism, torque requirement for each stator is 2.7 mNm. In addition, suspension force characteristics of the maglev motor should be identified to achieve stable levitation and better vibration suppression performance. The motor must balance the forces that are produced by the top motor and the bottom motor over the full range of rotor displacements. The required attractive force for each motor stator is determined to be 1.0 N per unit ampere that indicates ten times greater than the mass of the rotor.

2.2.2 Double stator type magnetically levitated motor design

The 3-D finite element method (FEM) analysis was carried out to determine motor geometries, such as a stator diameter, cross sectional area of stator tooth and volume of rotor permanent magnets. 3-D model of the motor components shown in Fig. 4 was simulated in ANSYS. The designed motor has six stator slots and four pole permanent magnets. An outer diameter of the motor is 22 mm. An air gap length of the motor is determined to be 1.5 mm that include the pump casing and blood gap. The number of turns in stator windings is 66. A magnetic suspension force and a rotating torque characteristics were computed considering the distribution of magnetic flux density, leakage flux and the magnetic saturation of the motor core. The magnetic flux is most concentrated in the stator tooth at the airgap length of 1.5 mm and the rated excitation current of 2 A. The magnetic field distribution in this condition is shown in Fig. 5, and the result indicates that there is no magnetically saturated part. Fig. 6 and Fig. 7 show an estimated attractive force and rotating torque with the excitation current of 0-2 A. The calculated force and torque are sufficiently greater than the identified target performances.

![3-D model simulated in ANSYS](image)

![Magnetic flux density contour](image)

![Axial attractive force characteristics](image)

![Rotating torque characteristics](image)
2.3 Fabrication of miniaturized 5-DOF controlled maglev motor

A 5-DOF controlled maglev motor was developed referring to a finally determined motor geometries. The schematic of the developed motor is shown in Fig. 8. Specifications of the motor geometries and rotor permanent magnets are shown in Table 1. The developed motor has an outer diameter of 22 mm, a height of 33 mm and a magnetic air-gap length of 1.5 mm. The weight of the levitated rotor is 11 g. The thickness of the rotor permanent magnets is 1.0 mm. The motor stator and the rotor back iron are made of soft magnetic iron (SUY-1). The permanent magnets are made of Nd-Fe-B which has a coercivity of 907 kA/m and a residual flux density of 1.36 T. The number of turns in the concentrated windings wound on each stator tooth is 66. Concentrated copper windings are independently wound on each stator tooth. The diameter of isolated copper wire is 0.3 mm. Resistance and inductance of each coil with different exciting frequency of 0-1 kHz are 0.76-0.90 Ω and 147 μH, respectively.

![Fig. 8 Developed 5-DOF controlled maglev motor.](image)

<table>
<thead>
<tr>
<th>Table 1 Specifications of the maglev motor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner diameter of the rotor and stator [mm]</td>
</tr>
<tr>
<td>Outer diameter of the rotor and stator [mm]</td>
</tr>
<tr>
<td>Total height of the maglev motor [mm]</td>
</tr>
<tr>
<td>Total volume of the maglev motor [cm³]</td>
</tr>
<tr>
<td>Height of stator teeth [mm]</td>
</tr>
<tr>
<td>Thickness of rotor back iron [mm]</td>
</tr>
<tr>
<td>Thickness of permanent magnets [mm]</td>
</tr>
<tr>
<td>Pole pair number of permanent magnet [-]</td>
</tr>
</tbody>
</table>

2.4 Magnetic levitation and rotation control system with digital PID controller

5-DOF of the levitated rotor postures and rotating speed of the rotor are actively regulated with digital PID controllers that are implemented on a micro-processor board DS1104 (dSPACE GmbH, Paderborn Germany) with MATLAB/Simlink. A schematic of a 5-DOF control system is shown in Fig. 9. Power amplifier (PA12A, Apex Microtechnology Corporation) supplies the calculated current to stator windings of both stators. Sampling and control frequency is 10 kHz. Three eddy current sensors (PU-03A, Applied Electronics Corporation) are set onto inner side of stator tooth to measure axial position and inclination angles around x and y axes of the levitated rotor. Other two eddy current sensors are set on x-axis and y-axis to measure radial positions of the levitated rotor. Three Hall Effect sensors (Asahi KASEI Corporation) are set at stator slots to detect the rotating angles of the levitated rotor with a sensitivity of 30 degrees electrical angle. The rotating speed at increments of 180 degrees (mechanical angle) is determined by the rotating angle divided by the time it takes to rotate the rotor 90 degrees.

![Fig. 9 Schematic of 5-DOF control and rotation control system.](image)
A block diagram for axial position and rotation control is shown in Fig. 10 (a). The axial position of the levitated rotor is stabilized by d-axis current i_d. Positive and negative d-axis current for field strengthening and field weakening are determined by a PID feedback loop in order to generate an unbalanced magnetic attractive force in rotor axial direction. The rotating speed is controlled by q-axis current i_q regulation. The equipollent q-axis current for both stator windings are calculated with a PI feedback loop. The d-axis current i_d and the q-axis current i_q are transformed into three-phase current i_u, i_v, and i_w. Then these currents are supplied to control windings of both stators to generate a four pole rotating magnetic field in the air-gap. A diagram for the inclination angle and radial position control is shown in Fig. 10 (b). Two PID feedback loops are for the inclination angle θ control and the radial position x control, and other two PID feedback loops are for the inclination angle θ control and the radial position y control. The PID feedback loops calculate the required excitation current in order to generate the restoring torque and the radial suspension force. These excitation currents are supplied to both stator windings and generate two pole rotating magnetic field in the air-gap. The produced two pole magnetic field has common rotating angular frequency of the magnetic field produced by the rotor permanent magnets in electrical angle.

2.5 Magnetic suspension performance evaluation

Magnetic levitation and rotation tests were carried out to verify non-contact rotation with the developed 5-DOF controlled maglev motor. The maglev motor and a magnetic levitation test rig were assembled as shown in Fig. 11. The movable ranges of the rotor in the axial and radial direction are restricted to ±0.3 mm and ±0.5 mm, respectively. Control gains of each digital PID controllers shown in Table 2 were determined based on experimentally measured suspension force and torque characteristics. The P gain and I gain of a rotating speed PI controller were 0.00075 A/rpm and 0.007 A/(sec × rpm) respectively. The rotor was levitated with 5-DOF control and a rotating speed of the magnetically levitated rotor was increased. In practical use of the maglev motor, the levitated rotor is in a fluid medium, so that a viscosity of the fluid affects damping characteristics in rotor suspension. Then, experiments were carried out once in air, and once in a water which is chosen due to simplicity of use. Oscillation amplitude in the axial and radial direction, and maximum inclination angles around x and y axes were measured. The maximum oscillation amplitude was defined as half of the peak-to-peak value of rotor vibration.

![Double stator maglev motor](image)

Fig. 11 Magnetic levitation and rotation test rig

<table>
<thead>
<tr>
<th>Gain</th>
<th>Radial position</th>
<th>Axial position</th>
<th>Inclination angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1.5 [A/mm]</td>
<td>12 [A/mm]</td>
<td>2.2 [A/deg]</td>
</tr>
<tr>
<td>I</td>
<td>0 [A/deg]</td>
<td>0.07 [A/deg]</td>
<td>0.07</td>
</tr>
<tr>
<td>D</td>
<td>0.002 [A/sec mm]</td>
<td>0.008 [A/sec mm]</td>
<td>0.00275 [A/sec deg]</td>
</tr>
</tbody>
</table>
2.6 Improvement of magnetic suspension performance by modifying magnetic circuit of maglev motor

The relatively large motor air-gap length of 1.5 mm has a possibility to cause deterioration of magnetic suspension performance. In this section, a magnetic circuit for the 5-DOF controlled maglev motor was firstly modified by changing the magnetic air-gap length to enhance produced suspension forces and a rotating torque. The magnetic air-gap length was shortened from 1.5 mm to 1.2 mm, carefully considering a thickness for blood path and pump casing. The shortening magnetic air-gap length increases a permeance of the magnetic circuit more than 10% in numerical calculation. The motor force and torque were expected to increase by 20-30% due to the increase in the magnetic permeance. A magnetic suspension control system should be redesigned due to a change of magnetic characteristics of the maglev motor. Then, gains of PID controllers for magnetic levitation were newly tuned based on previously measured motor suspension forces in order to achieve further stable levitation. A comparison of the measured motor force characteristics at two different air-gap lengths: an axial negative stiffness, a radial stiffness, and suspension forces produced with an excitation current of 1 A, is summarized in table 3. The determined gains shown in table 4 are slightly decreased compare with previous control gains due to increase in the suspension force by shortening magnetic air-gap length.

A magnetic suspension and rotation performance of the motor with air-gap length of 1.2 mm was evaluated using the same test rig shown in Fig. 11. A movable range of the levitated rotor was adjusted to the same conditions shown in section 2.5. The levitated rotor was magnetically levitated in water medium, and rotating speed was then increased from 2000 rpm to 5000 rpm. Oscillation amplitudes in axial direction and radial direction were evaluated. Inclination angle around x-axis and y-axis were also evaluated.

<table>
<thead>
<tr>
<th>Radial attractive force</th>
<th>0.13 [N/A]</th>
<th>0.16 [N/A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial stiffness</td>
<td>0.8 [N/mm]</td>
<td>1.2 [N/mm]</td>
</tr>
<tr>
<td>Axial attractive force</td>
<td>1.0 [N/A]</td>
<td>1.3 [N/A]</td>
</tr>
<tr>
<td>Axial negative stiffness</td>
<td>6.6 [N/mm]</td>
<td>9.9 [N/mm]</td>
</tr>
<tr>
<td>Restoring torque</td>
<td>5.0 [mNm/A]</td>
<td>6.5 [mNm/A]</td>
</tr>
</tbody>
</table>

3. Experimental results
3.1 Magnetic suspension performance comparison between in air and in water

The rotor was successfully levitated and rotated in both air and water. The maximum rotating speeds with no mechanical contact were 1600 rpm in air and 4500 rpm in water, respectively. The oscillation amplitude of the axial vibration of the rotor is shown in Fig. 12. The maximum oscillation amplitude was 0.1 mm at 1400 rpm in air and 0.05 mm at 4000 rpm in water. The axial oscillation increased drastically when the rotating speed was 1800 rpm. The axial vibration was significantly reduced at every rotating speed when water was used. Fig. 13 shows the radial oscillation amplitude of the radial vibration of the rotor. The radial oscillation amplitude increased as the
The levitated rotor touched the casing radially at 1800 rpm. In contrast, the oscillation amplitudes were less than 0.3 mm at all rotating speeds in water. Fig. 14 shows the maximum inclination angles around radial axes of the levitated rotor. The inclinations of the levitated impeller were greatly increased at the rotating speed of 1800 rpm in air. It can be seen that the levitated impeller was touching down constantly. When operating in water and at the rotating speed range of 1000 rpm to 4500 rpm, the inclinations were maintained around 1.2 degrees.

Fig. 12 Oscillation amplitude in axial direction of the levitated rotor (Air-gap of 1.5 mm)

Fig. 13 Oscillation amplitude in radial directions of the levitated rotor (Air-gap of 1.5 mm).

Fig. 14 Maximum inclination angle round radial axes of the levitated rotor (Air-gap of 1.5 mm).
3.2 Magnetic suspension performance improvement by shortening motor magnetic air-gap length

An improvement of magnetic suspension ability was achieved by modifying magnetic system, i.e. the magnetic circuit and the levitation controller. Oscillation amplitude of rotor vibration in translational motions (x, y and z) and fluctuation of inclination angles (θx and θy) were further stabilized in the case of the motor magnetic air-gap length of 1.2 mm. A maximum rotating speed of the levitated rotor was then increased up to 5000 rpm. The oscillation amplitude of the levitated rotor in axial direction was maintained around 50 μm over the operating speed range as shown in Fig. 15. The relationship between a rotating speed and radial oscillation amplitude of the levitated rotor is shown in Fig. 16. The oscillation amplitude in radial direction of the levitated rotor was around 100 μm regardless of the rotating speed of the rotor. The oscillation amplitude when the air-gap length is 1.5 mm was successfully decreased by 50 %. Maximum inclination angle of the levitated rotor is shown in Fig. 17. The inclination angle at every rotating speed is less than 0.8 degrees. Increase in the inclination angle according to increase in the rotating speed of the rotor as described in Fig. 14 was not observed even though the rotating speed was increased up to 5000 rpm.

![Fig. 15 Oscillation amplitude in axial direction of the levitated rotor (Air-gap of 1.2 mm)](image1)

![Fig. 16 Oscillation amplitude in axial direction of the levitated rotor (Air-gap of 1.2 mm)](image2)

![Fig. 17 Maximum inclination angle round radial axes of the levitated rotor. (Air-gap of 1.2 mm)](image3)

4. Discussion

Magnetic suspension system is a viable suspension technique to enhance mechanical durability and blood compatibility of the rotary VAD. The developed 5-DOF controlled maglev motor, which is miniaturized up to 22 mm in diameter and 33 mm in height, will contribute to the development of next generation pediatric VADs which can be applied to heart disease patients under ten years of age.
Non-contact high speed rotation of the miniaturized 5-DOF controlled maglev motor was not achieved in air as shown in Fig. 12, Fig. 13 and Fig. 14. A reason of the increase in the rotor vibration at the rotating speed of 1800 rpm is lack of assistance of viscous damping for vibration suppression. The maglev motor has the control windings independently wound on each stator tooth. The total current supplied to each control windings for 5-DOF control is determined as the summation of the axial position and rotation control current and the radial position and inclination control current. Current rating for each winding is limited to 2 A which is to restrict generating heat of the VAD system. Once the rotor suspension is unstable, the command current exceeds the current rating of 2 A and the desirable current for 5-DOF control is no longer available. In the case of rotor suspension in air, the rotor vibration was drastically increased from 1800 rpm because the rotor vibration could not be suppressed within the current rating of 2 A without the viscous damping.

The 5-DOF of levitated rotor postures were significantly stabilized with water viscous damping. In particular, the oscillation amplitude in the axial direction was sufficiently decreased by half amplitude that is demonstrated by the experiment in air. The mechanical contact was prevented by water damping over the VAD operating range of 3500-4500 rpm, however, the inclination angles increased according to the increase in rotating speed. The levitated rotor then touched down a number of times at more than the rotating speed of 4500 rpm. The inclination controllability is restricted by the rated current of 2 A, and hence the inclination control capacity should be enhanced to achieve further stable levitation by optimizing the motor geometry and the PID control system. From the results, the inclination control capacity should be enhanced to achieve further stable levitation by optimizing the motor geometry and the PID control system. In practical VAD operation, further high speed rotation with no contact will be achieved utilizing a greater vibration suppression due to blood viscosity that is three times higher than that of water. Although the vibration energy flows into the blood, there will be no significant blood damage because the energy is quite low in the case of low oscillation amplitude, vibration frequency and small rotor mass. Instability of the rotor suspension would be more significant cause of the blood damage than vibration energy absorption of the blood. Vibration suppression in unstable magnetic system increases heat dissipation from the motor to the blood due to requirement of higher control current. Furthermore, larger rotor oscillation induces high shear stress at the decreased blood gap, and accelerates blood destruction. Hence, utilizing viscous damping for rotor suspension is effective for stabilization of maglev system.

Length of motor magnetic air-gap is one of the most significant geometric parameter for high performance motor design. In section 2.6, an effect of shortening motor magnetic air-gap length on the magnetic suspension performance was investigated. The increased motor suspension force by modifying the magnetic air-gap length enhanced the rotor suspension ability. Especially, the radial oscillation amplitude and the inclination angle of the levitated rotor were successfully stabilized. The current requirements calculated by the PID feedback loops for radial position control and inclination control were within the rated current of 2 A due to increase in the force and torque constant. Due to decrease in the required control current against the rotor vibration, the radial suspension force and the restoring torque were sufficiently utilized.

In the future, total optimization of the magnetic system, such as motor geometric design, the material of magnetic core and the rotor permanent magnet, gains of PID controller, will be conducted to combine with a miniaturized centrifugal blood pump. Then, dynamic characteristics of the developed 5-DOF controlled maglev motor will be evaluated in VAD pump operation.

5. Conclusion

The axial gap type double-stator maglev motor which can actively control 5-DOF of rotor postures was developed for use in magnetically levitated rotary pediatric VAD. The significant effect of viscous damping on the performance of the magnetic system was demonstrated. Furthermore, modifying the magnetic circuit was significantly effective for improvement of magnetic levitation and rotation performance of the miniaturized maglev motor. The developed maglev motor indicated sufficient magnetic suspension and rotation performance to maintain stable non-contact operation at speeds required for the pediatric VAD circulatory support. The results verified a potential of the next generation implantable pediatric VAD system.
References

