日本におけるマレー糸状虫症とバンクロフト糸状虫症の比較研究

林 滋生

東京大学伝染病研究所寄生虫研究部（指導：佐々学 助教授）

STUDIES ON FILARIASIS MALAYI AND BANCRFTI IN JAPAN

SHIGRO HAYASHI

Dep. of Parasitology, Inst. for Infectious Diseases, Univ. of Tokyo

1. はしがき
2. マ糸状虫とバ糸状虫のミクロフィラリアの形態学的鑑別法の研究
3. 日本におけるマ糸状虫症とバ糸状虫症の疫学的比較研究
4. 混合感染の研究
5. マ糸状虫とバ糸状虫の媒介蚊の比較研究
6. マ糸状虫とバ糸状虫症の臨床像の比較研究
7. ビベラチン系抗フィラリア剤の効力の比較考察

I. は し が き

日本における糸状虫症の調査研究は、近年再び活動を加え、種々の点で再検討を要するに到った。著者は1950年以降神奈川県のフィラリア症の調査に参加し、八丈地方を中心にして研究を続けて来たが、特に1950年5月八丈小島で新たに検出材料につき、染色法に工夫を加えて糸状虫卵虫の形態に関し種々の特異点を見出し、その測定値についても測定学的考察を加えた結果、これがマレー糸状虫の卵虫であることを確かめた。これは日本における初めてのマレー糸状虫の発見である。以後日本各地のフィラリア症につき材料を集めた反面、1年間に5回八丈地方の調査を行ったところ、マレー糸状虫症が極めて断然した分布を示し、小島にのみ存在し、又直近接した八丈本島や、その他の日本各地には今日までのところ、バンクロフト糸状虫症のみが見出されており、日本における糸状虫症の分布上興味ある知見を得た。又現在までに、2例の両糸状虫混合感染例を見出したので、これを報告しこの感染の起源及び疫学上の意義について述べる。尚媒介蚊については、さきに八丈島のマ糸状虫症に関し、従来の常識に反してトウゴウマブカが主役を演じていることを指摘しながら、その後有意なマフィラリアについて実験的に媒介の可能性あることを見出し、バンクロフト糸状虫を用いた実験例と比較考察した。臨床所見については頻回の調査で、バ糸状虫症と異り、マ糸状虫症では乳様皮膚、乳頭状皮膚が無ならること、又皮膚の部位、程度、性状等に特異点があること等を確認した。又小島のマ糸状虫症について疫学的検討をするに、特に各症状の発症年令の分布形式についてその推定法を述べ、これに基づいて糸状虫症の病状の進行に関する特異性を考察した。治療に関しては、近年著しい進歩を示したが、特にビベラチ
系抗フィラリア剤を用いた成績について述べ、マ紐状虫症に関しては従来報告した抗ミクロフィラリアの作用以外に各種症状に対しても効力をあることを示したことを見出したので、ここに報告する。

II. マレー系状虫とバンクロフト系状虫のミクロフィラリアの
形態学的鑑別法の研究

1. 各種染色法の比較研究 ミクロフィラリア（以下 Mf と記す）の染色については、従来各研究者により種々の方法が用いられた。著者は、Giemsa 染色、同小林氏変法、酸性ヘマトキシリン、鉄ヘマトキシリン、メチルグリーン・ビロニン及びオーロール II とエオジン等による方法を試みたが、これ等は次々の特徴があるため、一応短いうることを知った。しかし疫学的調査で、不便な土地においても多数の者が検血する場合には、Giemsa が最も便利であり、又特殊細胞を染め別けて構造上の特徴をはっきりした上に、メチルグリーン・ビロニンによるのが最も好都合であることを確めたので、以下これらによる所見を報告する。

2. Giemsa 染色 血液の塗塩標本を乾燥後、なるべく短時間の後に、生理的食塩水又は 5%に薄めたメタノール液で溶血してから、型の如く Giemsa 染色を行った。染色液は水 1cc に対し Giemsa 液 1 滴の割合にして、細時間を長めに染色するのが良い結果を得た。最鮮明な赤色に染まった中に、赤紫色に濃染した虫体が見られるが、パ条状虫 Mf とマ条状虫 Mf を比較すると、前者が不規則な輪廓を有し、伸び又はゆるやかな波動を示すにに対して、後者は長さより短く、細かな屈曲を示して輪郭がジグザグし、又どことなく濃染するので、疫学調査で多数のものを一時に検する場合は、これだけでも大体両種の区別をすることができる。不確実なるときは、小林氏法に従って表面を軽く脱色すると内部細部が見られる。薬はメタノールを用いて瞬時に脱色することを繰返し、適当な分色を得るようにした。もとし細部に行おうとするときはメタノールを用いた。このようにすると頭部に薄色して影としてのみ認められ、虫体が良く観察出来る。この場合両種の最も特徴的な区別点は、パ Mf では尾部に核が存在しないのに対し、マ Mf では尾部の前部まで核がついて、更にこれに条状部分で連絡してとび離れたところに尾核を称す 1 乃至 2 つの核を有することである。これは濃染されて見得ることが、従来の記載から想像されるよりも小さくて見落し易い場合がある。他にパ Mf では虫体の核の核がパよりもはるかに密布するが虫体全体としても濃染した感があり、パ Mf のように核の輪廓が明瞭に見えず、逆に排泄孔、肛門が大きくなっつき認められる。特にマ Mf では G1 細胞がよく見られ、特にパ Mf では G1 細胞がパ Mf のそれより著しく大きい点等が観察出来、その他の特種細胞は見別が難いことが分った。

3. メチルグリーン・ビロニン法 濃塩標本を溶血後、生、またはエタノールで固定して染色する、処方は次の如くにするのが最も良好という結論に達した。
Methylgreen はクロロフォルムで精製を要する場合が多い。上記の染色液で約 15—30
時間染色し，エタノールで極めて短時間分色脱水してキシロール，パルサムで封入する。

処方

<table>
<thead>
<tr>
<th>薬物</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylgreen</td>
<td>0.2 g</td>
</tr>
<tr>
<td>Pyronin</td>
<td>0.3 g</td>
</tr>
<tr>
<td>生理的食塩水</td>
<td>100 cc</td>
</tr>
</tbody>
</table>

本法は緑色に核柱が染め出され，その中に排泄孔，肛門，又排泄細胞，G1—G4 細胞等
が明瞭に赤く染めわれる点で便利であることが確かめられた。

4. ミクロフィラリアによる余状虫の種別同定法の研究 余状虫仔虫の形態上，各特
種点までの頭端からの距離を全長に対する百分率で表わしたいわゆる定点の値が，特色
を極めてよく現われることが知られた。今小島で得た標本につき，メチルグリーグ
・ピロコーノ法で染色した Mf 20 隻を任意にえらび，測定した定点（Fixed point）
の値を第 1 表に示した。表には同時に Feng (1933) の中ジュリに於ける成績を併せて比
較した。表に見る如く測定値は全くメレー余状虫に一致する。パ余状虫のものと比較し
て，特に BNC，EC，G2 の位置について大きな差異があると見えるが，実際にかなり
多数の標本から得られた Feng の値を，母集団の値（m）と考え，小島で得た（N=20）
の標本平均値（\(\bar{x} \)），標本分散不偏推定値（\(u^2 \））を計算し，

\[
\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad u^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2
\]

\[
F_0 = \frac{(\bar{x} - m)^2 N}{u^2}, \quad n_1 = 1, \quad n_2 = N - 1
\]

によって \(F_0 \) を算出し，\(F \) 分布を用いて推計学的な検定を行うと，次に示す如く小島
の標本は，BNC，EC，G2 等について何れも，母集団と考えた平均値 m の，パ Mf の

<table>
<thead>
<tr>
<th>定点</th>
<th>小島の Mf</th>
<th>Mf. malayi</th>
<th>Mf. bancrofti</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC</td>
<td>2.20—5.38</td>
<td>3.82</td>
<td>3.18</td>
</tr>
<tr>
<td>N</td>
<td>20.4—27.0</td>
<td>22.62</td>
<td>20.72</td>
</tr>
<tr>
<td>EP</td>
<td>28.5—33.9</td>
<td>31.42</td>
<td>30.09</td>
</tr>
<tr>
<td>EC</td>
<td>33.0—41.8</td>
<td>37.99</td>
<td>37.07</td>
</tr>
<tr>
<td>G1</td>
<td>64.1—73.1</td>
<td>67.17</td>
<td>68.33</td>
</tr>
<tr>
<td>G2</td>
<td>69.8—80.8</td>
<td>74.71</td>
<td>73.82</td>
</tr>
<tr>
<td>G3</td>
<td>71.6—83.2</td>
<td>76.89</td>
<td>76.02</td>
</tr>
<tr>
<td>G4</td>
<td>74.1—84.0</td>
<td>78.83</td>
<td>78.42</td>
</tr>
<tr>
<td>AP</td>
<td>77.0—84.6</td>
<td>81.64</td>
<td>82.28</td>
</tr>
</tbody>
</table>
集団に属するものとは考えられない。即ちいずれも1％以下の危険率で、パムフのそれとは著しく異なることが言える。（定点測定値は百分率であるが、これが正規分布を示すものと仮定して著しい誤差はない。）

\[
\begin{align*}
BNC: & \bar{x} = 3.82, \; \nu = 0.50, \; F_0 = \frac{(3.82-1.58)^2 \times 20}{0.50} = 200.8 \\
EC: & \bar{x} = 37.99, \; \nu = 3.42, \; F_0 = \frac{(37.99-30.75)^2 \times 20}{3.42} = 306.6 \\
G_2: & \bar{x} = 74.71, \; \nu = 6.87, \; F_0 = \frac{(74.71-79.50)^2 \times 20}{6.87} = 66.7
\end{align*}
\]

（以上に対しF'_0(0.01) = 8.18 で上記は何れもこれよりはるかに大きい。）

第1表についての考察から、小島のムフはバンクロフト系状虫のものと顕著な相違点を有し、マレー系状虫のそれと一致することが分つた。例えば、BNCはムフの約2倍であるが、これは頭端から核の起始部までの距離が長いか、これを示す。この部分で測った各幅に対する比率は、小島の標本では平均1.7で体幅の2倍に近い値が得られたが、パムフではこの値が1に近い、又ECの値が大きく、パムフに比較して排泄細胞が後に位置して排泄孔との間が離れていることが分る。尚G2はムフよりも前方にあり、大体G1細胞と肛門孔の中央に位置するのが特徴である。この他Giemsaによる所見で述べた体長、形、核の性質、一部の定点の性質、尾核の存在等によりマムフはパムフとはつきり区別出来ることが確められた。

III. 日本におけるマ系状虫症とパ系状虫症の分布についての比較研究

1. 総括的考察 著者はマレー系状虫の常見にちなんで、日本における人畜系状虫症の分布につき従来の文献の整理と、各地における資料の累積に努めた結果、その日本における分布に関しての大なる結論をつかむことが出来た。元の系状虫症の分布について、九州の各地及びその島々に極めて高度の侵害状態を示し、風土病として大なる問題となっているが、これ等に南日本だけでなく、広く日本全国に分布していることを示す数多くの資料が見出された。たとえば明治45年の全国の肛門の検査での成績があり、その後の断片的に表わされた各地の調査成績を総合して見ても、この事実は大なる変動を受けていないもののはずである。さらに九州以外に四国、和歌山、静岡、新潟及び北は青森、岩手等に地域的に流布が散在することが推定され、これを更に精しく調査し、流行学的にも再検討を加えようと試みがなされつつある。これ等の地では多くの努力にも拘らず、まだマレー系状虫症が見出されず、すべてバンクロフト系状虫である。

これらの知見を総合すると、日本におけるフィラリア症の疫学として、バンクロフト系状虫がこのように広い分布を示している事が先ず第一の特色である。これに対比してマレー系状虫は極めて限局した分布を有し、八丈小島にのみ存在することを確めたが、これが第二の特色である。次に第三の特色として、河川両側の系状虫が極めて明瞭な分離を示していることを今回確めた。

2. 八丈地方の両系状虫症の分布についての研究 著者は両系状虫症の分布について
ての比較研究において最も重要な環境をもつ八丈地方に注目し、昭和 25 年 5 月から昭和 27 年 9 月までの間に、計 5 回にわたる実地調査を行った。その結果は第 2 表に示す通りである。

第 2 表 八丈地方の条状虫仔虫陽性率

<table>
<thead>
<tr>
<th>場所</th>
<th>検査月日</th>
<th>被検者数</th>
<th>陽性者数</th>
<th>%</th>
<th>条状血</th>
</tr>
</thead>
<tbody>
<tr>
<td>小島</td>
<td>1950年 5月</td>
<td>85</td>
<td>29</td>
<td>34.1</td>
<td>マレー条状血</td>
</tr>
<tr>
<td>島</td>
<td>1950年 9月</td>
<td>74</td>
<td>12*</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>鳥</td>
<td>1951年 8月</td>
<td>67</td>
<td>14</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>打</td>
<td>1952年 5月</td>
<td>67</td>
<td>11*</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>村</td>
<td>1952年 9月</td>
<td>45</td>
<td>8</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>小島宇津木村</td>
<td>1950年 5月</td>
<td>20</td>
<td>1</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>八丈本島</td>
<td>1950年 10月</td>
<td>59</td>
<td>1</td>
<td>1.7</td>
<td>パンクロフト条状虫</td>
</tr>
<tr>
<td></td>
<td>1952年 9月</td>
<td>62</td>
<td>5</td>
<td>8.1</td>
<td></td>
</tr>
</tbody>
</table>

* 夫々 1 名のパフ混合感染者を含む

即ち八丈本島に存在するものはパンクロフト条状虫であり、海上 7 車をはなれて直ぐ近接した小島にはマレー条状虫が著しく濃厚に存在しており、この両地における主要フィラリア相が全く相反していることが見出された。八丈本島で著者は、1950年 10 月 3 日午後 9.15—9.45 の間に、平地の大賀郡村にあたる夜間高等学校で学生 59 名を検血し、35 才の男子 1 名（1.7%）にパンクロフト条状虫の仔虫を見出し、1952年 9 月 8 日には山地の中之郷村夜間高校で午後 8.00—8.30 の間に学生 62 名の検血を行い 5 名（8.1%）にパンクロフト条状虫に陽性を認めめた。これに反し 1950 年以来 5 回の

第 3 表 八丈島のパンクロフト条状虫仔虫陽性率
(1952 年 9 月 8 日の検査例)

<table>
<thead>
<tr>
<th>居住地</th>
<th>被検者数</th>
<th>陽性者数</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>大賀郡村</td>
<td>1</td>
<td>1</td>
<td>男 23 才</td>
</tr>
<tr>
<td>植立村</td>
<td>15</td>
<td>1</td>
<td>男 17 才</td>
</tr>
<tr>
<td>中之郷村</td>
<td>44</td>
<td>3</td>
<td>男 18, 18, 20 才</td>
</tr>
<tr>
<td>末吉村</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>62</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

小島の島打村村民に対する夜間一斉検血の結果は、いずれもマレー条状虫で、しかも高い感染を目立していることを見出した。なかでも 2 名の混合感染者を発見したが、これについては次章で述べる。又 1950 年 5 月に小島の他の村である宇津木村で、20 名中 1 名（5%）に仔虫を見出したが、これもまたマレー条状虫であった。このように非常に接
近した2つの島で、両種の糸状虫はつきりと分離して存在することは、極めて興味深い事実である。

IV. 混合感染の研究

第1例 前○○○男、32才男子、島村住居。1950年10月1日の検血でバマ両糸状虫の混合感染を見出した。本患者は小島で幼時を過ごしたが、永く沖縄、八丈島に居住し、昭和21年小島に戻ったものである。現在流血中に多数のMfを認めると、糸状虫症の顕性症状を何ら呈していない。バMfを少数含むが、乳・尿、眼、喉頭炎、バプラフロット糸状虫に特有な症状も見られない。10月1日より2日にかけて3回検査した耳血20mm中の仔虫の成績を第4表に示す。

第4表 小島における混合感染の1例（1950）

<table>
<thead>
<tr>
<th>検血日</th>
<th>Mf. malayi</th>
<th>Mf. bancrofti</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10月1日 4:30 pm</td>
<td>21</td>
<td>1 (4.5%)</td>
<td>22</td>
</tr>
<tr>
<td>10月2日 8:00 pm</td>
<td>161</td>
<td>7 (4.2%)</td>
<td>168</td>
</tr>
<tr>
<td>10月2日 6:25 am</td>
<td>123</td>
<td>2 (1.6%)</td>
<td>125</td>
</tr>
<tr>
<td>計</td>
<td>305</td>
<td>10 (3.2%)</td>
<td>315</td>
</tr>
</tbody>
</table>

バMfの占める割合は低かった。又この比率の時間的変化は、推計学的検定で有意な差を認めなかった。ときに数名のマレーマ糸状虫症患者についてTurnusを調べて、その出現が夏の6-7時頃より増し夜中最高と示方第に減少するならかな曲線を持つに対し、バMfのそれは夜中に頂を示すものと急峻な曲線であることを知ったので、混合感染者では、時間的に検血すれば両糸状虫の比率に推移があることを推定したが、この実験でそれを確認するに充分な成績を得なかった。

第2例 前○○○男、32才男子、島村住居、小島の生まれで若いときを小島で過ごし、当時既に「バク」（フィリパ症の俗語）にかかったと称するが、その後八丈島、ロサ島等を20年近くまわり昭和23年3月にやっと小島に戻った。1952年（昭和27年）5月の一斉検査の時、初めて着者の検査を受け、両糸状虫の混合感染を見出した。約20mmの耳血にマMf19隻とバMf6隻を認めたが、この患者にも現在糸状虫症の症状のあらわれは認められなかった。

小島における糸状虫症の起源は明らかでないが、古くから存在することは確かである。しかも本報及び他の報文に数々述べた如くその蔓延状態は極めて高度である。すべてマレーマ糸状虫症であった。ここで報告した2例は他のバ糸状虫症流行地に居住した経歴からみて、恐らく他の場所でバ糸状虫の宿主を受け、小島においてマ糸状虫に感染したものと考えられる。小島には本来マ糸状虫のみが存在するものと考えて差支えないが、ここに入れて来た2例の存在がある程度感染源となって、将来小島のフィラリア相にどのような影響を与えるか、八丈と小島につけ分れた両糸状虫の分布境界の将来について興味をもって注目している。
V. ハマグリカメ、ハマダラカメ、アエデの媒介虫の研究

1. 文献上の考察
著者は世界各地のハマグリカメ、ハマダラカメ、アエデの媒介虫に関する文献を精査し、これを分類学的にまとめたところ、自然感染を見出し、又は実験的に可能性を認められたものは次の14種に上ることを知つた（第5表）。

第5表 ハマグリカメ、ハマダラカメ、アエデの媒介虫

<table>
<thead>
<tr>
<th>種名</th>
<th>言語</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mansonia (Mansonioides) annulata</td>
<td>マンソニア</td>
<td>Lecente, 1908</td>
</tr>
<tr>
<td>2. Mansonia (Mansonioides) annulipes</td>
<td>マンソニア</td>
<td>Edwards, 1924</td>
</tr>
<tr>
<td>3. Mansonia (Mansonioides) annulifer</td>
<td>マンソニア</td>
<td>(Theobald, 1901)</td>
</tr>
<tr>
<td>4. Mansonia (Mansonioides) indiana</td>
<td>マンソニア</td>
<td>Edwards, 1930</td>
</tr>
<tr>
<td>5. Mansonia (Mansonioides) uniformis</td>
<td>マンソニア</td>
<td>(Theobald, 1901)</td>
</tr>
<tr>
<td>6. Mansonia (Mansonioides) longipalpis</td>
<td>マンソニア</td>
<td>(van der Wulp, 1928)</td>
</tr>
<tr>
<td>7. Mansonia (Mansonioides) indica</td>
<td>マンソニア</td>
<td>(Yamada, 1921)</td>
</tr>
<tr>
<td>8. Anopheles barbirostris</td>
<td>アノフィレ</td>
<td>van der Wulp, 1826</td>
</tr>
<tr>
<td>9. Anopheles hyrcanus sinensis</td>
<td>アノフィレ</td>
<td>Wiedemann, 1826</td>
</tr>
<tr>
<td>10. Anopheles hyrcanus nigerrimus</td>
<td>アノフィレ</td>
<td>Giles, 1900</td>
</tr>
<tr>
<td>11. Anopheles hyrcanus “X”</td>
<td>アノフィレ</td>
<td>Venhuis, 1940</td>
</tr>
<tr>
<td>12. Armigeres (Armigeres) subalbatus</td>
<td>アルミゲーレス</td>
<td>(Coquillett, 1898)</td>
</tr>
<tr>
<td>13. Aedes (Steomyia) albopictus</td>
<td>アエデ</td>
<td>Skuse, 1895</td>
</tr>
</tbody>
</table>

*実験的に仔虫の発育を見出したもの

この大部分はハマグリカメ Mansonia（ヤ属 Mansonioides）、及びハマダラカメ Anopheles に属するものであつて、従来知られたハマグリカメの好適な媒介者がイエカ属 Culex 又はヤブ属 Aedes を主とするのと比較して著しい特徴を示している。

2. 八丈小島における媒介虫の研究成績
著者は小島のハマグリカメ媒介虫の研究に着手したところ、意外にヤブ属の Finlaya 亜属に属するトウゴウヤブ Aedes togoi の自然感染を見出し、今回さらに実験的にイエカ属のアカイエカ Culex pipiens pallens も媒介の可能性があることを知り、ここに報告する。

a. 八丈小島の蚊相に関する観察的調査成績
小島では地形が急峻で、水田、池沼等が存在せず、これ等を発生場所とするハマグリカメ、ハマダラカメの蚊を見出せないので、度々の調査で確認した蚊相は第6表の通りである。

第6表 小島の蚊相

<table>
<thead>
<tr>
<th>種名</th>
<th>言語</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Culex (Culex) pipiens pallens</td>
<td>クレックス</td>
<td>Coquillett, 1895</td>
</tr>
<tr>
<td>2. Culex (Lutzia) vorax</td>
<td>クレックス</td>
<td>Edwards, 1921</td>
</tr>
<tr>
<td>3. Aedes (Finlaya) togoi</td>
<td>アエデ</td>
<td>Theobald, 1907</td>
</tr>
<tr>
<td>4. Aedes (Stegomyia) albopictus</td>
<td>アエデ</td>
<td>Skuse, 1895</td>
</tr>
<tr>
<td>5. Aedes (Stegomyia) flavopictus</td>
<td>アエデ</td>
<td>Yamada, 1921</td>
</tr>
<tr>
<td>6. Armigeres (Armigeres) subalbatus</td>
<td>アルミゲーレス</td>
<td>(Coquillett, 1898)</td>
</tr>
</tbody>
</table>
この中トウゴウヤブカが最も多数に見られ、各戸のコンクリート製貯水タンクや海岸の岩にある中海の流れに漬し発生している。事実人家内で採集した蚊の殆んど全部がこの種を占めていた。

b. 媒介蚊に関する第1回の調査成績 1950年9月に、人家内で集めた68匹のトウゴウヤブカ中1匹（1.5%）にフィラリアの2例と3令の幼虫各1頭を発見し、このものが小島では媒介の主役をつとめていることを確めた。

c. 媒介蚊に関する第2回の調査成績 その後1952年6月に同様自然蚊を調べ、Aedes togoi 7匹、Culex pипiens pallens 1匹を剖検し、前記の1例の中にフィラリア幼虫（2令）1頭を見出し、トウゴウヤブカの役割を再確認した。この時には同時に小島で採集した幼虫より羽化させたAedes togoi とCulex pипiens pallens を用いて実験的に感染を試みた。患者として50才の婦人を選んだが、この例は夜の8時10分の検血で、扁平標本1枚中平均77頭の多数の子虫を保有していた。類回の検査で仔虫はすべてマレー糸状虫であることが確かめられた。夜7.20~7.50 の30分間に患者の手を蚊の調音駆に差入れて吸血させましたが、トウゴウヤブカは充分に吸血しなかった。アカイエカは約20匹吸血蚊を得たので、試験管で各個調育をし毎日数欠食塩水中で解剖し、フィラリア幼虫の発育を調査した。実験開始の6月1日および6日までは小島で室温（正午で平均24.5℃であった）に置き、以後は東京の実験室で28℃の孵卵器に調育した。合計30匹の吸血アカイエカを剖検したが、その中でフィラリア幼虫の発育したもののみ第7表に示した。吸血後13日及び18日を経過したものから、頭部、胸部、

第7表. アカイエカ内に於けるマレー糸状虫幼虫の発育
(1952年6月)

<table>
<thead>
<tr>
<th>吸血後13</th>
<th>16</th>
<th>1</th>
<th>2</th>
<th>令幼虫</th>
<th>1</th>
<th>2</th>
<th>令幼虫</th>
<th>1</th>
<th>2</th>
<th>令幼虫</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸部</td>
<td>1</td>
</tr>
<tr>
<td>腹部</td>
<td>1</td>
</tr>
</tbody>
</table>

腹部等に合計完全幼虫（3令）5隻、2令幼虫1頭を得た。幼虫の発育の認められたのは結局30匹中3匹の10%にしか過ぎない。相当数の幼虫を吸血したと思われるのに、最高1匹に仔虫の発育したもの3匹のみであった。即ちアカイエカはたとえ完全に適当な宿主ではないにしても、マレー糸状虫媒介の可能性をもつことが推定され、このことは同虫の媒介としては新番新種であることを記載する。尚小島で得たフィラリア幼虫の生体測定値を第8表に掲げ、同程度に発育した Feng（1936）の実験例と比較したが、これは実験的にマ Mf をAnopheles hyr. sinensis に吸血させ、29~32℃で飼育した成績である。
小林昭治郎博士古稀祝賀記念誌

第8表 小島で得た蚊体内のフィラリア幼虫と中寄のそれとの生体観察の比較

<table>
<thead>
<tr>
<th>部位*</th>
<th>Ades togoi</th>
<th>Anopheles hyr. sinensis</th>
<th>Culex pip. fall.</th>
<th>Anopheles hyr. sin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOE</td>
<td>0.8</td>
<td>12.3</td>
<td>4.5日後</td>
<td>0.6</td>
</tr>
<tr>
<td>N</td>
<td>10.9</td>
<td>17.0</td>
<td>12.6</td>
<td>10.4</td>
</tr>
<tr>
<td>EXP</td>
<td>28.8</td>
<td>41.5</td>
<td>24.5</td>
<td>43.7</td>
</tr>
<tr>
<td>EOE</td>
<td>40.8</td>
<td>84.0</td>
<td>94.9</td>
<td>95.3</td>
</tr>
<tr>
<td>GA</td>
<td>93.5</td>
<td>5.1×5.1μ</td>
<td>3.5×5.1μ</td>
<td>5.1×5.1μ</td>
</tr>
<tr>
<td>BR</td>
<td>40.8</td>
<td>491.μ</td>
<td>723μ</td>
<td>1214μ</td>
</tr>
<tr>
<td>A</td>
<td>27.8μ</td>
<td>22.3μ</td>
<td>24.3μ</td>
<td>25.3μ</td>
</tr>
</tbody>
</table>

* 全長に対する百分率で表わしてある

VI. マ糸状虫症とバ糸状虫症の臨床像の比較研究

小島のマ糸状虫症を観察して得た知見は、バンクロフト糸状虫症のそれと異なるかなり特異なものである。第一にバ糸状虫症で普通に見られる、患者を悩ましている乳頭尿、乳頭血尿等が全く見られなかった。第二に象皮膚の程度が軽く、その部位も四肢の末梢部にのみ見られた。

第三に陰部を犯されるものが多く、陰囊水腫、陰囊乳頭腫等が見られなかった。この他病状の初期に身体の各部にあらわれる限局性の皮膚の発赤腫脹はマ糸状虫症にかなり特徴的なようである。これは初秋に多く起り、圧痛の殆どない腫脹で、受診者には指摘されていない。

各小島ではバ糸状虫症と異って熱発作が、象皮腫があり、そこで外傷を受けた場面に起ることが多いようである。少くも熱発作をもって初めてこの病状に罹病したことを知ったものはなかった。

しかし病状の進行が極めて緩徐で慢性的なものである点では両者ともに一致している。ここに小島で、マ糸状虫症の患者31名について、症状の発現年令と、1年中に数回も皮膚発赤又は熱発作を繰返す最盛期の年令、象皮膚が出初めた年令等を既往歴をとつって調べた結果を第9表に示す。これは例えば初発年令についていえば、31名の患者の中、一定の年令までに何%のものが初発したかを示している。

これ等の年令分布はBlissの一次変換によってプロビット（probit）を求め、対数変換した年令軸に対してプロットして見ると、第1図に示す如く緑に直線をなすことが分かる。実際上記の病状の発現かたを仮に第Ⅰ期、Ⅱ期、Ⅲ期（末期）とすれば、これ3各期の発現は年令に対して、いわゆる対数正規型、又はいかければ年令に対して
第9表 小鳥のマ糸状虫症における各期症状発現年令の分布

<table>
<thead>
<tr>
<th>年 令</th>
<th>初発例数</th>
<th>最盛期例数</th>
<th>象皮症例数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5才以下</td>
<td>3 (9.7%)</td>
<td>0 (0.0%)</td>
<td>0</td>
</tr>
<tr>
<td>10才</td>
<td>9 (29.1%)</td>
<td>1 (9.1%)</td>
<td>0</td>
</tr>
<tr>
<td>15才</td>
<td>18 (58.0%)</td>
<td>4 (36.4%)</td>
<td>0</td>
</tr>
<tr>
<td>20才</td>
<td>25 (80.6%)</td>
<td>6 (54.6%)</td>
<td>0</td>
</tr>
<tr>
<td>25才</td>
<td>26 (83.8%)</td>
<td>6 (54.6%)</td>
<td>0</td>
</tr>
<tr>
<td>30才</td>
<td>27 (87.1%)</td>
<td>8 (72.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>35才</td>
<td>28 (90.3%)</td>
<td>9 (81.8%)</td>
<td>2 (40.0%)</td>
</tr>
<tr>
<td>40才</td>
<td>30 (96.7%)</td>
<td>9 (81.8%)</td>
<td>2 (40.0%)</td>
</tr>
<tr>
<td>45才</td>
<td>31 (100%)</td>
<td>11 (100%)</td>
<td>4 (80.0%)</td>
</tr>
<tr>
<td>50才</td>
<td>31 (100%)</td>
<td>11 (100%)</td>
<td>5 (100%)</td>
</tr>
</tbody>
</table>

第1図 マ糸状虫症における各期発現年令の分布推定

Probit

第10表 マ糸状虫症における各期の移行状況

<table>
<thead>
<tr>
<th>病期 年令</th>
<th>最低</th>
<th>最高</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>初発</td>
<td>5才</td>
<td>41才</td>
<td>13才</td>
</tr>
<tr>
<td>最盛期</td>
<td>10才</td>
<td>43才</td>
<td>21才</td>
</tr>
<tr>
<td>象皮期</td>
<td>31才</td>
<td>47才</td>
<td>39才</td>
</tr>
</tbody>
</table>

poisson型の分布をしていることが分かった。第1図から各期の平均発現年令を推定することが出来るが、第10表の結果を得た。
これで見ると小島のマ糸状虫症患者は平均13才で発病し、7〜8年を要して最盛期を経、更に平均発症より26年も経過して象皮腫の発現を見ることが分った。このように非常に慢性の経過を辿る点は、パ・マ両糸状虫症に共通で、診断、治療に当り注目を要する事実である。

VII. ピベラチン系抗フィラリア剤の効力の比較考察

著者らはマレー糸状虫症に対して戦後あらわれた有力な抗フィラリア剤であるピベラチン化合物のスパトニン（1-Diethyl carbamyl -4-Methyl piperazine citrate）を初めて使用し、その効果をたしかめたが、さらに発熱の外来を訪れた個例のパ糸状虫症にも用いてその成績をうかがうことが出来た。本剤の特色は両糸状虫の何れに対しても顕著な Mf 殺滅作用があり、又大量を用いいればおそらく親虫をも殺し得ることを認め、発症の初期に用いた場合はパ糸状虫症の乳癲癡にしても奏効することが分った。その成績の一部は既に報告したが、糸状虫症の他の症状に対しては未だその効果に関する報告をみないのが、ここに小島で発熱を生じたマ糸状虫症について、治療後2年間に亘って観察したところを報告する。

第11表 マレー糸状虫症に対するスパトニンの効果

<table>
<thead>
<tr>
<th>No.</th>
<th>性</th>
<th>年令</th>
<th>スパトニン濃度用量mg/kgB.W.</th>
<th>Mf</th>
<th>皮膚発赤</th>
<th>熱発作</th>
<th>象皮腫</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>治療前</td>
<td>4月後</td>
<td>前後</td>
</tr>
<tr>
<td>1</td>
<td>男</td>
<td>57</td>
<td>284.0</td>
<td></td>
<td>12</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>女</td>
<td>6</td>
<td>110.0</td>
<td></td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>女</td>
<td>16</td>
<td>110.0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>女</td>
<td>47</td>
<td>90.0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>男</td>
<td>51</td>
<td>80.0</td>
<td></td>
<td>10</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>女</td>
<td>44</td>
<td>62.0</td>
<td></td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>女</td>
<td>10</td>
<td>50.0</td>
<td></td>
<td>6</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>女</td>
<td>37</td>
<td>46.7</td>
<td></td>
<td>5</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>男</td>
<td>40</td>
<td>34.0</td>
<td></td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>女</td>
<td>37</td>
<td>13.3</td>
<td></td>
<td>5</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>男</td>
<td>53</td>
<td>12.0</td>
<td></td>
<td>4</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>男</td>
<td>60</td>
<td>4.4</td>
<td></td>
<td>14</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>女</td>
<td>61</td>
<td>4.0</td>
<td></td>
<td>10</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>女</td>
<td>63</td>
<td>4.0</td>
<td></td>
<td>3</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>男</td>
<td>7</td>
<td>4.0</td>
<td></td>
<td>4</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>女</td>
<td>9</td>
<td>4.0</td>
<td></td>
<td>15</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>男</td>
<td>10</td>
<td>3.3</td>
<td></td>
<td>8</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>女</td>
<td>36</td>
<td>2.2</td>
<td></td>
<td>3</td>
<td>8</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>男</td>
<td>32</td>
<td>2.0</td>
<td></td>
<td>8</td>
<td>5</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>男</td>
<td>36</td>
<td>1.8</td>
<td></td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
第11表に示した如く、20例中皮膚の限局性発赤腫脹は、その起る頻度が、服用前に比し軽減したものの3例、2年間に全く起らなくなったものの7例、不変又は増強したもの3例であり、発作については、軽減2例、起らなくなったものの3例、不変又は増強2例である。象皮膚のあったものは5例あったが、服用により2年間に何もの変状を認めることが出来なかった。専不変又は増強例は何れもスパトニの全服用量が体重1kg当り3mg以下のものであり、総量12mg以上のものでは多かれ少かれ影響が認められた。これによりスパトニは、Mfの殺滅以外にパ条状虫症の乳廃尿、マ条状虫症の皮膚発赤又は発作に或程度の効力を有し、象皮膚には未だ何らの効力を示すに到らないことを知った。

VIII. 結論

1. マレー条状虫とバンクロフト条状虫のミクロフィラリアに関し、Giemsa染色、メチルグリーン・ピロニン染色を施したときの形態的所見を述べ、両種の推計学的比較を行った。

2. 日本における上記2種の疫学について、特に分布の上で両種の相互の特異性を述べ、八丈地域の調査の結果、両種は互に混在して存在することを記した。

3. マ条状虫の疫学小島で、2例の2種混合感染例を見出し、その感染の起源と疫学上の意義について考察を加えた。

4. マ条状虫の統計学として、小島の自然蚊での観察にもとづき、トウゴウヤブカAedes togoiの役割を再確認し、実験的に感染実験を行いアカイエカCulex pipiens pallensにも媒介の可能性があることを報告した。

5. パ・マ両条状虫症の臨床症状を比較し、特に小島のマ条状虫症について、その病期の進行状況を統計的に推定し、極めて特徴のある慢性経過を追ることを記した。

6. ピベラチン系抗フィラリア剤が、条状虫症に及ぼす影響の中、ミクロフィラリアの殺滅作用の他に従来報告のなかった各種症状に対する効力を報告した。

終りに臨み、終始懇願なる御指導を賜わたった研究室主任佐々木助教授に深遠の謝意を表すると共に、調査に協力を下された教部の加納六郎、佐藤孝次、臨床部の小峰旋、石井省吾の諸先生及び経えず御制情裁御教示を賜わた長崎医大の北村精一教授に厚く感謝の意を述べる。

本研究は文部省科学研究費にその費用を仰いている。
文　献

2) Feng, L.C.: Tr. 7th Cong. F.E.A. T. M., Nanking 1: 491-494, 1934
5) 林滋生: 公衆衛生, 10(2): 12-14, 1951
6) 林滋生: 日本寄生虫学会九州地方部会講演要旨: 18頁, 1951
7) 林滋生: 衛生動物, 2(2/3): 75-76, 1951
8) 林滋生, 佐々学, 加納六郎, 佐藤孝慈: 日本寄生虫学会記事, 20: 42-43, 1952
9) 林滋生, 小峰績, 石井省吾, 佐々学: 新しい治療第2集, 東西医学社, 東京, 1952
10) 望月代次, 井上三郎: 医学中央雑誌, 9(16): 1505-1513, 1912
11) 望月代次, 井上三郎: 医学中央雑誌, 9(17): 1609-1617, 1912
12) 佐々学, 林滋生, 佐藤孝慈, 小峰績, 石井省吾: 日新医学, 38(10): 575-578, 1951
14) 佐々学, 林滋生: 東京獣医畜産学会報告 (フラリア特輯号): 4-12, 1952
16) 佐々学, 林滋生: 日本寄生虫学会記事, 21: 19-20, 1953