Studies on the occurrence and termination of quiescence in nymphs of Dermatophagoides farinae
Ikuko SAKAKI, Chiharu SUTO and Hideko ITO
Department of Medical Zoology, Nagoya University
School of Medicine, Showa-ku Nagoya 466, Japan

Key words: Dermatophagoides farinae, house dust mite, pharate tritonymph, quiescence, diapause.

はじめに

室内外で生活するヒョウヒダニ類は、気管支喘息、
通年性アレルギー性鼻炎、アトピー性皮膚炎などの主
要なアレルゲンとなることは今日世界的に知られている
（Voorhorst et al., 1964；石井, 1975 ; Wharton, 1976 ;
Platts-Mills and Chapman, 1987）．これらの研究の過
程で、室内外中のダニ類の生態、特にヒダニ類の繁殖と
個体数の季節的消長、生息・繁殖場所などについて多くの研究
が行われてきた（大島, 1964, 1971 ; Oshima, 1970 ;
Bronswijk, 1973 ; 伊藤ら, 1974 ; 室本・大内, 1976 ;
高岡ら, 1977 ; Arlian et al., 1982, 1983 ; 高岡・岡田,
1984 ; 伊藤, 1988 ; 森谷, 1988）。

日本の家庭内ヒョウヒダニ類の個体数は一般に夏から
早春にかけて最大となり、その後減少して冬の乾燥・
低温期に最低となり、春から初夏に増加し始める．こ
のような季節の消長からみて、ヒョウヒダニ類の繁殖は
湿・温度によって調節されており、特に室内的相対温度
(RH) の重要性が指摘されている（大島ら, 1972 ; 大
島, 1975 ; Arlian, 1977）．温度の重要性は飼育実験によ
っても確かめられており、繁殖の至適温度は 湿度 25°C
のとき、ヤケヒョウヒダニ Dermatophagoides ptero-
nyssinus (D. p. と略す) については70～80 % RH
(Miyamoto et al., 1975 ; 松本ら, 1986)，コナヒョウヒ
ダニ Dermatophagoides farinae (D. f. と略す) では
75～60 % RH（Sasa et al., 1970 ; 藪・松本, 1973 ;
松本ら, 1986）であると報告されている．また, D. f.
の限度相対温度は湿度依存的で, 15°C, 52 % RH から
35°C, 68 % RH の範囲にある（Arlian and Veselica,
1981）．そこで, D. f. が限界相対湿度以下の環境, た
とえば冬の乾燥をどのような機構で耐過するかという問
題が生じてきた。

ヒョウヒダニ類の発育期は卵, 幼虫, 前若虫, 後若
虫, 成虫の5期に分かれる．実験室内の好適条件下（溫度
25°C, 相対湿度 75 %）では, 卵から成虫までの平均発
育日数は約 30～35 日であるが, 個体群密度が増大する
と数カ月間発育を休止する前若虫の出現することが知
られている（Ellingsen, 1975, 1978 ; Wharton, 1976 ;
Arlian et al., 1983）．このような長期発育休止前若虫
（prolonged quiescent protonymph）は水分交換（代謝)
能および酸素消費量が著しく低下し, 乾燥などに対して
きわめて耐性になるので（Ellingsen, 1975, 1978）, 冬
期の低温・乾燥を耐過するための適応型であると考えら
れている（Arlian et al., 1983）．しかし, その耐性機構を
はじめ, 発育休止の誘導および終了に関与する要因な
どはまだ十分に検討されていない．
われわれは D. f. 飼育個体群における長期発育休止若虫の出現状況、その経過期間および終了などについて観察を行ったので、その概要を報告する。

材料と方法

供試ダニ

用いたコナヒョウヒダニ（D. f.）はフマキラー（株）（広島県）より分与され、当教室で異代飼育中のものの（川上ら、1989年）で、ラット・マウス用固定顎歯の粉末（日本クレア社、東京）と乾燥酵母粉末（エピソス社、東京）を 1:1 に混合した飼を与え、25℃、75% RH（飽和食塩水で調整）の条件で飼育した。飼育容器としては 100 または 500 ml の三角コルベを用い、それぞれに 20 または 100g の飼を与え、適当数の D. f. を接種し、飼育容器の口径に合わせて切った紙（東洋漉紙 No. 2 または画仙紙）を市販合成糊（積水樹脂社、東京）で接着してふたとした。

発育休止若虫の採取・観察法

下記の「観察 1」の実験を除き、飼育容器内の個体数が十分に増加した飼育容器のふたの内側周囲に集合・静止した個体群を採取し、まったく飼を与えずに 25℃、75% RH に静置して観察し、その後 6 週間以上にわたって静止状態を続けたものを長期発育休止個体とみなして供試した。休止虫は下紙等に固着していたので、毛筆で洗い、その 20 個体をホールスライドグラス（ホーグの直径 1.5 cm、最大部 0.5 mm）に入れ、スライドグラスでおお、両端をダブルクリップで押さえた。このホールスライドグラスを湿度を調節したプラスチック製密閉容器に入れ、湿度を設定したインキュベーター内に静置し、脱皮する個体を実体顕微鏡下で観察した。

実験には 20 頭ずつ 3 群、60 個体を用いた。

観察 1：発育休止若虫の出現

飼育容器のふたに集合してきた個体を 5 日間にわたって連続採取し、観察に供試した。採取した D. f. を 25℃、75% RH の条件下で、飼を与えずに直径 1.5 cm、高さ 3 cm のガラス製管にに入れ静置した個体を数え、活動中の個体は別の容器に移した。この操作を 10 日間にわたって行った。その後、静止した D. f. を 10 カ月間にわたって観察した。調査開始後 5 カ月間は上記の条件下で、それ以後は飽和食塩水を入れたプラスチック製密閉容器に静置し、室温下で観察した。実体顕微鏡による観察で、脱皮状態を認し、体が扁平になったり、体中央部から折れ曲がって死亡したと判定された個体を発育段階別に記録した。また、発育休止 D. f. の発育段階を知るため、静止後 4 週間以上観察してから脱皮した個体をホイマー氏液で封入し、光学顕微鏡下で観察した。

観察 2：長期発育休止の終了および低温処理の影響

発育休止若虫のふたの内側に集合・静止して 25℃、75% RH、飽和状態下で 8 週間経過した発育休止若虫を用いた。供試虫を入れたホールスライドグラスを、飽和食塩水で湿度を調節したプラスチック製密閉容器（18×8×10 cm）に入れて、10、10、18、25℃に 1 週間静置し、その後 25℃、75% RH に移して、脱皮する個体数を調査した。

観察 3：長期発育休止期間と脱皮の関係

25℃、75% RH の環境条件下で 6、8、20、32 週間経過した発育休止若虫を、ホールスライドグラスに閉じ込め、25℃、75% RH 下で脱皮してくる個体を観察記録した。

観察 4：長期発育休止若虫の脱皮におよぼす温度の影響

25℃、75% RH 条件下で 32 週間経過した発育休止若虫を、休止虫を、5、18、25℃下で静置して、脱皮に対する温度の影響を調査した。

観察 5：長期発育休止若虫の脱皮におよぼす塩、水との接触の影響

発育休止期間は 23 週間および 35 週間の若虫を数種の塩類添加溶液によって温度を 31% RH～85% RH の 6 段階に調節した密閉容器に静置し、25℃で脱皮に対する温度の影響を調査した。塩類添加で用いた溶液とその相対湿度は CaCO3 (31% RH）、MgCl2 (33% RH）、KNO3 (43% RH）、Mg(NO3)2 (55% RH）、NaCl (75% RH）、および KCl (85% RH) である (Winston and Bates, 1960)。

また、24 週間経過した発育休止若虫を蒸留水に 3 時間浮かべた後、33% RH および 75% RH に調節した容器に静置し、25℃で脱皮する個体を観察した。

結果

1. 観察 1：長期発育休止若虫の出現

飼育容器のふたには出（分散）してきた D. f. を 5 日間連続採取して、その後の 10 日間に静止した個体数を Table 1 に示した。全で 3,490 個体が採取され、その内訳は雄 6.0%，雌 10.6%。若虫 79.5%、幼虫 0.6%、および発育段階が決定できなかった 3.3%であった。10 日間の観察期間中に供試虫の約 31%が静止状態になった。静止虫の出現は観察 1 日目に最も高く約 15%で、逐次的に減少して 10 日目には 0.5%になった（Table 1）。静止しなかった成虫および幼虫は全個体、若虫は約 61%が逐次死亡した。
Mites wandering on the rims and covers of the culture bottles were collected for 5 successive days and kept at 25°C and 75% RH, without food. The structure of developmental stages of the mites in culture was: males 18.6%, females 11.3%, tritonymphs 14.3%, protonymphs 32.5%, larvae 18.8%, and eggs 4.9%.

Table 1 Occurrence of resting/quiescent mites during 10 days of observation.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>No. of mites examined</th>
<th>No. of mites resting/quiescent on each day</th>
<th>Total of 10 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>632</td>
<td>137</td>
<td>257</td>
</tr>
<tr>
<td>2</td>
<td>855</td>
<td>97</td>
<td>209</td>
</tr>
<tr>
<td>3</td>
<td>590</td>
<td>41</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>573</td>
<td>133</td>
<td>275</td>
</tr>
<tr>
<td>5</td>
<td>759</td>
<td>91</td>
<td>199</td>
</tr>
<tr>
<td>Total</td>
<td>3,409</td>
<td>499</td>
<td>1,045</td>
</tr>
</tbody>
</table>

Fig. 1 Change in percent of mites resting/quiescent, dead, and moulted.

The mites collected from rims and covers of culture bottles were kept without food for 5 months at 25°C and 75% RH, and further 5 months at room temperature. ●, resting/quiescent; O, dead; △, moulted.

調査開始後10日以内に静止した個体群（31%）のなかにも脱皮する個体がみられ、発育休止若虫の割合は1カ月後に約19%，2カ月後約12%と低下したが、その後は脱皮・死亡する個体は少なく、10カ月後でも約10%であった。以上の観察結果をFig. 1に示した。

本観察および後述する実験の過程で4週間以上にわたって発育休止状態にあった若虫のうち、脱皮した個体の発育段階を調査した結果、観察した1,050個体の99.6%は後若虫、0.4%が成虫であった。

Fig. 2に発育休止若虫の形態を示す。左、右きに第3，4脚を強く折り曲げており、外観的には前若虫であったが、その外皮の下には新皮が形成されていた（Fig. 2A）、このことは封入操作中に旧外皮が脱げた個体（Fig. 2B）で判然と示された。これらの結果は発育休止に入るのは大部分若虫であり、後若虫（pharate tritonymph）の状態で発育休止が持続していることを示す。

2. 観察2：発育休止の終了におよぼす低温処理の影響

5°C に静置したグループでは25°C に移してから10日後に約10%，20日後には約43%が脱皮し、以後も少数ながら脱皮する個体がみられ、70日後には約59%となった。しかし、その後は120日後まで観察を続けたが、脱皮個体はみられなかった。一方、10°C、18°C に静置したグループは100日後でもそれぞれ約9%，8%の脱皮率にすぎなかった。また、25°C に継続静置した対照グループでは脱皮個体は認められなかった（Fig. 3）。

3. 観察3：発育休止期間と脱皮の関係

発育休止期間が6，8，20，32週間通じた若虫をその着いている紙から離し、25°C，75% RH に静置して脱皮率を調査した。

6週グループでは脱皮する個体は認められなかったが、8週グループでは10日後までに14%，20日後までに22%，30日後までに26%の脱皮率であった（Fig. 4）。このグループは150日間にわたって観察を続けたが、その時点までの累積脱皮率は27%であった。これに対し、20週グループでは脱皮個体が早くから多くみられ、11日後33%，19日後65%，30日後77%の累積脱皮率を示した。32週グループでは脱皮がさらに早まり、6日後32%，9日後82%，11日後90%，30日後93%となった。

これらの結果は、発育休止期間が長期間になると脱皮しやすくなることを示す。また、観察に囲まれた状態ではどの週齢の発育休止個体群でも脱皮個体は認められなかった。以後の観察には、20週以上の長期にわたって発
Fig. 2 Appearance of quiescent nymphs

Fig. 3 Effect of temperature on moulting of the nymphs with age of 8-week.
The quiescent nymphs were pretreated at 5℃ (●), 10℃ (▲), 18℃ (○) and 25℃ (■) for 1 week after separation from the substrate, then incubated at 25℃, 75% RH.

Fig. 4 Effect of aging in the nymphs on moulting.
The quiescent nymphs with various age were separated from the substrate and incubated at 25℃, 75% RH. ○, 6-week; ■, 8-week; □, 20-week; ▲, 30-week.

5. 観察 5：長期発育休止若虫の脱皮におよぼす温度、水との接触の影響
発育休止状態で 23 週および 35 週経過した若虫を温度 25℃ で相対湿度 31〜85 %に調節した容器に静置し、脱皮におよぼす湿度の影響を調査した。23 週経過した発育休止若虫の静置 30 日後の累積脱皮率をみると，55〜85% RH の条件下では 71〜86 %，43% RH では25 %，31〜33% RH では7〜13 %と低湿度区ほど脱皮率が低くなることが示された（Fig. 6）。また，35 週経過した発育休止若虫の静置 30 日後の累積脱皮率も 55〜85% RH 条件下では87〜90 %と高く，33% RH では24 %
Fig. 5 Effect of incubation temperature on moulting of the nymphs. 
The quiescent nymphs with age of 32-week were separated from the substrate and incubated at 5 (■), 18 (●) and 25°C (○).

Fig. 6 Effect of relative humidity on moulting of the disturbed nymphs with age of 23-week. 
The nymphs were incubated at 25°C and relative humidities of 31 (■—■), 33 (□—□), 43 (▲—▲), 55 (○—○), 75 (●—●) and 85% (■—■).

Fig. 7 Effect of relative humidity on moulting of the disturbed nymphs with age of 35-week. 
The nymphs were incubated at relative humidities of 33 (○—○), 55 (●—●), 75 (○—○) and 85% (▲—▲).

Fig. 8 Effect of contact with water on moulting of the disturbed nymphs with age of 24-week. 
The nymphs were floated on the surface of water for 3 hr, then incubated at 25°C, 75% RH (solid lines) or 33% RH (dotted lines). Circle, contact with water; quadrat, no contact with water.

考 察

飼育中的 D. f. 個体群の中に長期発育休止若虫が出現することは、前記した研究者らによってすでに観察されており、Ellingsen (1975, 1978) は発育休止若虫の酸素消費量が活動若虫の 1/28.5 に低下すること、および水分交換能が約 10 倍遅くなり、ダニ体内と大気中の水分交換が实际上ほとんど行われなくななることを報告している。この長期発育休止若虫の出現は Arlian et al. (1983) も述べているように、D. f. の生態学上重要な意義をもつものと考えられるが、多くの課題がまだ検討されていない。

本研究ではまず飼育容器の上部には出し（分散）で
発育休止状態になった若虫にもFig.1に示されたように1〜2カ月間の比較的短期間に脱皮する個体と、25℃、75％RH以下で少なくとも2カ月間、さらに室温下で5カ月間も発育休止が続続する個体とがみられた。また、松本ら（1986）は前若虫期に発育休止を示した個体が、後若虫期にも発育休止を示す傾向があると述べている。これらのことばは発育休止の深さや個体差はあるかに多型性があることを示唆しているので、発育休止の誘導要因をあらわして今後検討したいと考えている。

長期発育休止個体の発育段階はFig.2に示したように大半が潜後若虫（pharate tritonymph）であったが一部には潜成虫（pharate adult）もみられ、Wharton（1976）および松本ら（1986）も述べているように、前若虫のまま残り後若虫期も発育休止に落ち着ることが示された。われわれの結果では休止中の99.6％が前若虫であったが、Whartonは前若虫88.6％、後若虫11.4％であったと報告している。これらの若虫はろ紙等の基質に固着しており、そのままが発育休止状態の持続にある種の役割を果たしているように考えられた（后述）。

発育休止若虫を5℃に1週間静置したところ、10℃、18℃および25℃に静置したグループに比べて脱皮率が高いことが示された。このことは昆虫の休眠などで知られている「低温による活性化」と類似した現象のように思われたが、低温処理効果可能にこれらの昆虫種に大きさに虫体表面に水滴が観察されたので、水分吸収により脱皮が促進された可能性も考えられる。25℃に静置した発育休止若虫でもその持続期間が20週以上になり、ろ紙から人為的に分離したところ脱皮した。この脱皮はFig.4に示したように発育休止の持続期間に依存であることから、発育休止期終了中は虫体内で何らかの生理学的変化が生じたことが示唆される。また、ろ紙に固着していた発育休止若虫個体群では脱皮がみられなかったことば、ろ紙からの分離という刺激も脱皮の引き金になっていることを示唆している。Ellingsen（1975,1978）は発育休止若虫をその固着している基質から分離（disturb）すると酸素消費量および水分交換能が一時的に上昇することを認め、分離操作に伴い生物体に傷が生じ、これによって代謝活動が高まったと考察している。また、Wigglesworth（1972）によれば、発育休止若虫の外皮を傷つけると発育休止が終了し、脱皮することが知られている。これからのことから、長期間経過した発育休止若虫は基質から分離すると、その刺激によって酸素消費量、水分交換能などが高まり脱皮が促進され、一方、発育休止状態に入る短期間（6〜8週）の若虫では同様な刺激に対しても代謝の活性化が起こりにくい、あるいは一時的に、脱皮個体数が少なかったものと考察される。

次に、20週以上経過した長期発育休止若虫の脱皮に対する温、湿度の影響を検討した。その結果、脱皮率は温度および湿度依存で、18℃以下および55％RH以下では脱皮が抑制される。また、水接触実験で限界相対湿度（Arlian and Veselica, 1981）以下の33％RHでも水接触グループの脱皮率が高まったことは、水分の吸収が発育休止個体の脱皮の引き金になっていることを示唆して興味深い。

本研究結果に基づきD.f.の長期発育休止の特徴をまとめる。ただし、次のようになる。①発育休止に入るのは大部分前若虫であり、特定の発育段階、生理的状態にある若虫が発育休止に入ることを示唆する。②発育休止状態になった若虫は乾燥等の不適環境に対して耐性を示す。また、発育に好適な温、湿度条件でも長期間その状態が持続する。③長期発育休止は低温度、ろ紙等からの分離、水との接触などの刺激によって終了する。④これらの結果から、D.f.若虫にみられる発育休止現象は一種の休眠にみとめることもできると考えられるので、発育休止の誘導、維持、終了などに関与する要因についてさらに検討する予定である。
置し、長期発育休止若虫の出現状況を観察したところ、1カ月後約19％、2カ月後12％、5カ月後10％とな り、10カ月後でも同様な値を示した。これらの長期発育 休止若虫は8脚とも強く折り曲げてろ紙などに固着して おり、大部分潜伏若虫であった。

固着状態の若虫では脱皮が認められなかった。低温、処理、ろ紙からの脱皮などの刺激により脱皮した。また、発育休止の終了にはその持続期間が関係することが示された。すなわち、分離した若虫を25℃、75％RHに静 置し30日後の異常脱皮率を比較したところ、発育休止 6週間では0％、8週間では26％であったのに対し、 20週77％、32週93％と高かった。このような長期発育 休止若虫の脱皮は高湿度ある水との接触等により促進され、低温、低湿度下では抑制された。

以上の結果から、D. f. 若虫の発育休止には発育に好 適な環境条件で脱皮が抑制されている時期と容易に脱 皮する時期とが存在し、一種の休眠とみなすこともでき ると考えられた。

本稿を終えるにあたり、ご指導とご校閲をいただいた名古屋大学医学部医動物学教室熊田信夫教授、ならびに 教室の皆様に深謝の意を表します。

引用文献


Ellingsen, I. J. (1975): Permeability to water in different adaptive phase of the same instar in the American house dust mite. Acarologia, 4: 734-744.


大島司郎 (1964): 床面に分布するダニの研究。1. 衛生動物, 15: 233-244.


Some factors that affect the occurrence and termination of quiescence in nymphs of *Dermatophagoides farinae* were examined. The mites aggregating on the rims and covers of culture bottles were collected when the mite populations were increased. They were kept at 25°C, 75% relative humidity (RH), without food. After 1 month, about 20% of the mites passed into quiescent state, and a half of them remained quiescent for 5 months at 25°C, 75% RH, and further 5 months at room temperature. Most of the quiescent mites were protonymphs. They were glued to the substrate such as covering filter paper. Quiescence in half of the 8-week-aged nymphs terminated when they were disturbed by being separated from the substrate, pretreated at 5°C for 1 week, and then incubated at 25°C, 75% RH. But the nymphs did not moult by pretreatment of 10, 18, and 25°C for 1 week. The nymphs in age of 20-week or more moulted even when they were continuously incubated at 25°C and 75% RH, if separation from the substrate was made. The mouling rates depended on age in the nymphs; the older the nymphs, the faster the mouling. However, the nymphs glued onto the substrate remained quiescent. Mouling of nymphs with age of 22-week or more was suppressed by incubating them at lower temperatures than 25°C, or lower than 55% RH. The contact of the quiescent nymphs with water for 3 hr enhanced mouling even when they were incubated at 33% RH. These results suggest that quiescence in nymphs of *D. farinae* observed in the present study might also involve a very similar phenomenon to diapause.