医用画像情報学会雑誌
Online ISSN : 1880-4977
Print ISSN : 0910-1543
ISSN-L : 0910-1543
原著論文
DCNNによるLIDCデータからのすりガラス状陰影の検出
平山 一希陸 慧敏タン ジュークイ金 亨燮橘 理恵平野 靖木戸 尚治
著者情報
ジャーナル フリー

2017 年 34 巻 2 号 p. 70-74

詳細
抄録

Lung cancer is one of the most important cancer in the world. Among them, Ground Glass Opacity(GGO)has a hazy area of increased attenuation in the lung image. In recent years, development of a Computer Aided Diagnosis (CAD)system for reducing the burden on work load and improving the detection rate of lesions has been advanced. In this paper, we propose a CAD system to extract GGO from CT images. Firstly, we extract the lung region from the input CT images and remove the vessel, and bronchial region based on 3 D line filter algorithm. After that, we extract initial GGO regions using concentration and gradient information. Next, we calculate the statistical features on the segmented regions. After that, we classify GGO regions using support vector machine(SVM). Finally, we detect the final GGO regions using deep convolutional neural network(DCNN). The proposed method is tested on 31 cases of CT images from the Lung Image Database Consortium(LIDC). The results demonstrate that the proposed method has 86.05[%] of true positive rate and 39.03[/case] of false positive number.

著者関連情報
© 2017 医用画像情報学会
前の記事 次の記事
feedback
Top