Analysis of family reflections of OD mica polytypes, and its application to twin identification

Massimo NESPOLO

Mineralogical Institute, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Present address: National Institute for Research in Inorganic Materials, Research Center for Creating New Materials, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan.

Abstract:

The Periodic Intensity Distribution (PID) analysis of the diffraction pattern of mica polytypes can be applied to single crystals. Since micas often appear as twins, general criteria are established to investigate the presence of twinning. These criteria are derived through a geometrical approach based on the general symmetry features of the layer stacking. Non-orthogonal polytypes have been classified into Class a and Class b, depending on the direction along which c axis is inclined. Common twinning in micas is by reticular pseudo-morohedry; for Class a polytypes its presence can be recognized by careful inspection of the geometry of the diffraction pattern. On the other hand, a pseudo-rhombohedral primitive cell exists in case of Class b polytypes: for them, two of the five pairs of twin elements common to non-orthogonal polytypes correspond to twinning by pseudo-morohedry, which does not modify the geometry of the diffraction pattern.

It is proved that the geometrical features of mica diffraction pattern can be divided into two types: 1) the number and position of diffractions common to all polytypes built on the same structural principle, called family reflections, derived by calculating the reflection conditions; 2) the number of planes with orthogonal geometry. The analysis takes into account that most of the mica polytypes reported to date are OD structures belonging to two subfamilies, and that a third, rare kind of polytypes, called mixed-rotation polytypes, consists instead of non-OD structures. For mixed-rotation polytypes the definition of the family reflections differs from that of the two subfamilies. It is shown that these three kinds of polytypes are easily recognized by analyzing the reflections with $h \neq 0 \pmod{3}$ and $k = 0 \pmod{3}$. Then, the number of reflections along family rows and the number of orthogonal planes in the diffraction pattern permit to investigate the presence of twinning.

1. Introduction

Mica polytypes represent one of the most complex groups of structures in nature. Because of the large number of stacking possibilities, which increases very rapidly with the number of layers in the repeat unit (Mogami et al., 1978; McLarnan, 1981), and of the existence of pseudo-symmetries (Bailey, 1975), both the geometrical description and the interpretation of the diffract-
tion patterns is rather difficult. Partial enhancement of symmetry has been observed too (Sadanaga and Takeda, 1968). This situation is made even more complex by the occurrence of twins. The diffraction pattern of twins is often hardly distinguishable from that of polytypes (Sadanaga and Takéuchi, 1961; Nespolo et al., 1997a,b; Nespolo and Kogure, 1998), and for this reason Takano and Takano (1958) introduced the definition of apparent polytypism. Several approaches have been developed to reach a general, systematic and as simple as possible interpretation, and different authors have recognized different and not always equivalent basic features, common to all or part of the polytypes. Some features of the lattice and/or of the intensity distribution can be explained in a different way by those approaches; depending upon the purpose, one method may be more suitable than the others. In this paper, a detailed analysis of the symmetry principles and of the geometry of the diffraction pattern of mica polytypes is presented; the reflection conditions for the so-called family reflections, which are common to all polytypes built on the same structural principle, are analytically derived. The results lead to: 1) classify polytypes into three kinds, easily recognized from the geometry of the diffraction pattern; 2) reveal the existence of a pseudo-rhombohedral primitive cell for one of the two Classes in which non-orthogonal polytypes are subdivided; 3) re-investigate the twin laws of non-orthogonal mica polytypes; 4) introduce general criteria that permit to confirm or exclude the presence of twinning by reticular pseudo-merohedry through a simple inspection of the geometry of the diffraction pattern. The procedure to solve the stacking sequence of an unknown mica polytype is outlined.

2. Choice of the Unit Layers

Micas are phyllosilicates built by stacking two tetrahedral sheets (T) sandwiching an octahedral sheet (O). Monovalent and, less frequently, divalent cations take place between two adjacent T sheets belonging to next layers (Pauling, 1930). Since the cleavage plane in micas is commonly thought to be in correspondence of the cations between two next T sheets (Müller and Chang, 1969; Kogure, 1997), the sequence T-O-T is the most commonly adopted unit layer (conventional layer). Following Takéuchi (1971) and Takéuchi and Haga (1971), hereafter it is labelled M layer. The two T sheets within a layer are staggered by 1/3l, in the (001) projection and the highest symmetry of the whole M layer is C2/m (Pabst, 1955). However, both the T and the O sheets have symmetry higher than the M layer.

In the octahedral sheet three cation sites exist: one site is trans-coordinated by OH/F and is labelled M1; the other two sites are cis-coordinated by OH/F and are labelled M2. Depending whether two or all of the three sites are occupied, micas are divided into dioctahedral and trioctahedral (Smith and Yoder, 1956). Then, the symmetry of the O sheet can be H(3)1m (homo-octahedral micas: all the three sites occupied by the same cation), P(3)1m (meso-octahedral micas: two of the three sites occupied by the same cation; the remaining one may be vacant) or P(3)12 (hetero-octahedral micas: the three sites are occupied in a different way) (Đurđović, 1994a) [layer-group notation after Dornberger-Schiff (1959); details in Merlin (1990)]. In hetero-octahedral micas the cis-sites are subdivided into two sites M2 and M3 (Bailey, 1984). For meso-octahedral micas, the origin of the O sheet is in the site with different occu-
pation; for hetero-octahedral micas it is in the site containing the lowest electron density (Đurović et al., 1984). The direction connecting two M1 sites defines the a axis; normal to it the b axis is located, and the orthohexagonal relation \(b = a^{3/2} \) is closely followed.

Two models have been proposed to describe the symmetry and the main structural features of the T sheets. In the Pauling model all the geometrical distortions are neglected and the T sheets have ideal layer-symmetry \(P(6)mm \) (Pauling, 1930). The most relevant distortion of the T sheets is the ditrigonalization effect, which reduces the tetrahedral layer-symmetry to \(P(3)1m \). This arrangement is described by the trigonal model \(^{1}\) (Nespolo et al., 1999b).

In Pauling model, the coordination polyhedron for interlayer cations is a hexagonal prism, which is not modified by a \(60^\circ \) rotation between next layers.

On the other hand, in the trigonal model rotations by \(2\times 60^\circ \) lead to a trigonal antiprismic coordination for interlayer cations, whereas rotations by \((2n+1)60^\circ \) to trigonal prismatic coordination (Zvyagin, 1957; Radoslovich, 1959). In Fig. 1 a comparative view of different unit layers is given.

3. Reticular Classification of Mica Polytypes: Unit Cells, Axial Settings and Pseudo-Symmetries

Hereafter, a pair of pseudo-orthohexagonal axes (\(a, b \)) and a pair of pseudo-hexagonal axes (\(a_1, a_2 \)) in the (001) plane of mica layer are used. Among the three independent relative orientations of these two pairs, the one in which \(a \) and \(a_1 \) axes coincide is here taken (see Fig. 2 in Nespolo et al., 1997a). The corresponding orthohexagonal cell is labelled \(C_1 \) in Arnold (1996)\(^2\) and on it a (pseudo)-orthohexagonal axial setting is built, which has been labelled \(C_1 \) too (Nespolo et al., 1997a, 1998). The (001) projection of c axis is labelled \(c_n \)

\(^{1}\) The trigonal model is also known as Radoslovich model (Radoslovich, 1961), but it was proposed for the first time by Belov (1949).

\(^2\) Three orthohexagonal cells are described in Arnold (1996), namely \(C_1, C_2, \) and \(C_3 \). The orthohexagonal cell used since long ago in describing micas corresponds to \(C_1 \) (e.g. Donnay et al., 1964). Other authors, such as the OD school, adopted the \(C_2 \) cell (e.g. Đurović et al., 1984). This different choice of the orthohexagonal cell has to be taken into account when comparing the descriptions given by different authors.
Class a polytypes

\[a^S \text{ setting} \]
\[a < b \]
\[\cos \beta = -a/3 \]

\[\beta \]
\[\alpha \]
\[a \]
\[b \]
\[c \]

Class b polytypes

\[b^T \text{ setting} \]
\[a < b \]
\[\cos \alpha = -b/3 \]

\[b \]
\[c \]

Fig. 2. Definition of the \(a^S, b^T \) and \(b^S \) axial settings of mica polytypes.

(Zvyagin, 1997). With reference to \((a, b)\) axes, mica polytypes have been classified as follows:

1. orthogonal mica polytypes have \(e_n = (0, 0) \) and can be hexagonal (no known examples), trigonal and orthorhombic;
2. non-orthogonal polytypes are divided into Class a \([e_n = (x_n, 0)]\) and Class b \([e_n = (0, y_n)]\); the lattice of triclinic polytypes is metrically (pseudo)-monoclinic.

The number of layers building a polytype is expressed as:

\[N = 3^n(3K+L) \]

\((K \text{ and } n \text{ are non-negative integers; } L=1 \text{ or } 2), n \text{ defines the Series and } L \text{ the Subclass. } K \text{ is a constant that enters in the transformation matrices relating axial settings (Nespolo et al., 1997a, 1998).} \)

For non-orthogonal polytypes, the (ideal) length of \(e_n \) is either \(a/3 \) or \(b/3 \) (Zvyagin, 1967); it follows that the period along \(c \) in the \(C_1 \) setting (orthogonal setting) corresponds to 3\(N \) layers. The following symbols are used hereafter:

- \(c^*_1 \): parameter along \(c^* \) of the simplest polytype \((1M)\): it corresponds to about \(0.1 \text{\AA}^{-1} \);
- \(N \): number of layers in the conventional cell;
- \(N' \): number of layers in the unit cell of the \(C_1 \) setting: \(N' = N \) for orthogonal polytypes,
- \(N' = 3N \) for non-orthogonal polytypes;
- \(l_{C_1} \): \(l \) index in the \(C_1 \) setting.

Several monoclinic settings, whose cell contains a single repeat unit \((N \text{ layers})\), can be chosen for non-orthogonal polytypes. Among them, the setting in which \(e_n \) is kept (ideally) constant for all polytypes is labelled \(a^S \) [Class a: \(e_n = (1/3, 0) \); \(S \) stands for Standard] and \(b^T \) [Class b: \(e_n = (0, 1/3) \); \(T \) stands for Transitional]. The corresponding monoclinic \(l \) indices are labelled \(l_{C_0} \) and \(l_{C_1} \) (Nespolo et al., 1997a). The metric equations in both direct and reciprocal space and the relations between \(l \) and \(h, k \) indices are given in Table 1. The \(b^T \) setting is monoclinic \(a \)-unique; from it, a monoclinic \(b \)-unique setting is obtained through the axes exchange \(a \rightarrow -b; b \rightarrow -a; c \rightarrow -c \), so that \(a > b \) and \(\beta > 90^\circ \), as in Smith and Yoder (1956) definition: this setting is labelled \(b^S \) (Fig. 2).
TABLE 1. Metric equation in direct and reciprocal space and relation between Miller indices in the orthogonal and monoclinic settings for the two Classes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Metric equations in direct space</th>
<th>Metric equations in reciprocal space</th>
<th>relation between l_{C_1} and h, and k indices</th>
<th>relation between orthogonal and monoclinic l indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$c\cos\beta = -a/3$</td>
<td>$a\cos\beta = c*/3$</td>
<td>$l_{C_1} = h(\text{mod } 3)$</td>
<td>$l_{\text{orth}} = (l_{C_1} - h)/3$</td>
</tr>
<tr>
<td>b</td>
<td>$c\cos\alpha = -b/3$</td>
<td>$b\cos\alpha = c*/3$</td>
<td>$l_{C_1} = k(\text{mod } 3)$</td>
<td>$l_{\text{orth}} = (l_{C_1} - k)/3$</td>
</tr>
</tbody>
</table>

Fig. 3. Projection on (001) plane of the primitive, conventional (double), pseudo-hexagonal (triple) and C_1 (sextuple, pseudo-orthohexagonal) cells, for Class a (A) and Class b (B) polytypes. Black, white and gray circles represent lattice nodes at $z = 0$, $1/3$ and $2/3$ (z is referred to c axis of the C_1 cell). Thick lines: borders of the C_1 cell and of the pseudo-hexagonal cell. Dashed lines: borders of the upper plane of the conventional and primitive cells (the lower plane is in common with C_1 cell and pseudo-hexagonal cell respectively). For Class b a pseudo-rhombohedral cell exists (dotted lines), which is best viewed by means of the pseudo-rhombohedral axes a_R, a, b: (pseudo)-orthohexagonal axes. a_1, a_2: (pseudo)-hexagonal axes. The (pseudo)-two-fold axes in the (001) plane of the pseudo-hexagonal multiple lattice are indicated by an arrow, according to International Tables for Crystallography convention. For non-orthogonal polytypes they are classified in the following way. m: structure two-fold axis for monoclinic polytypes belonging to crystal classes 2 and 2/m; merohedry twin axis for monoclinic polytypes belonging to crystal class m and for triclinic, metrically monoclinic polytypes; pseudo-merohedry twin axis for metrically triclinic polytypes. t: reticular pseudo-merohedry twin axes for both monoclinic and triclinic polytypes. r: pseudo-merohedry twin axes for both monoclinic and triclinic polytypes (only Class b). The same classification holds for the planes normal to (001) (not shown).

Three unit cells, built on the two pairs of axes described above, are useful to put in evidence the existence of pseudo-symmetries.

1. The (ideally) orthohexagonal cell of the C_1 setting. For non-orthogonal polytypes it is a sextuple cell; for orthogonal polytypes it is a double cell that coincides with the conventional cell. It is also the cell of the twin lattice, in case of twinning by reticular pseudo-merohedry (Donnay et al., 1964).

2. A pseudo-hexagonal cell based on (a_1, a_2) axes. For non-orthogonal polytypes it is a triple cell; for orthogonal polytypes it is primitive.

3. The conventional cell (double cell), monoclinic C centred. For orthogonal polytypes it coincides with the C_1 cell. For non-orthogonal polytypes, by stacking three conventional
<table>
<thead>
<tr>
<th>Polytype</th>
<th>Cell</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>α(°)</th>
<th>β(°)</th>
<th>γ(°)</th>
<th>V(Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M₂₁</td>
<td>cc</td>
<td>5.200</td>
<td>9.032</td>
<td>20.15</td>
<td>99.77</td>
<td>90.00</td>
<td>90.00</td>
<td>932.6</td>
</tr>
<tr>
<td></td>
<td>C₁</td>
<td>5.200</td>
<td>9.032</td>
<td>59.59</td>
<td>91.18</td>
<td>90.00</td>
<td>90.00</td>
<td>2798.1</td>
</tr>
<tr>
<td></td>
<td>pHe</td>
<td>5.200</td>
<td>5.211</td>
<td>59.59</td>
<td>91.02</td>
<td>90.00</td>
<td>119.93</td>
<td>1399.1</td>
</tr>
<tr>
<td></td>
<td>pRc</td>
<td>20.057</td>
<td>20.057</td>
<td>20.15</td>
<td>14.89</td>
<td>14.89</td>
<td>14.90</td>
<td>466.3</td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td>5.200</td>
<td>5.211</td>
<td>20.06</td>
<td>83.57</td>
<td>82.55</td>
<td>60.07</td>
<td>466.3</td>
</tr>
<tr>
<td>2M₂²</td>
<td>cc</td>
<td>5.175</td>
<td>8.965</td>
<td>20.31</td>
<td>100.67</td>
<td>90.00</td>
<td>90.00</td>
<td>926.0</td>
</tr>
<tr>
<td></td>
<td>C₁</td>
<td>5.175</td>
<td>8.965</td>
<td>59.92</td>
<td>92.21</td>
<td>90.00</td>
<td>90.00</td>
<td>2777.9</td>
</tr>
<tr>
<td></td>
<td>pHe</td>
<td>5.175</td>
<td>5.176</td>
<td>59.92</td>
<td>91.92</td>
<td>90.00</td>
<td>120.00</td>
<td>1388.9</td>
</tr>
<tr>
<td></td>
<td>pRc</td>
<td>20.139</td>
<td>20.139</td>
<td>20.31</td>
<td>14.70</td>
<td>14.70</td>
<td>14.76</td>
<td>463.0</td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td>5.175</td>
<td>5.176</td>
<td>20.14</td>
<td>84.53</td>
<td>82.62</td>
<td>60.01</td>
<td>463.0</td>
</tr>
<tr>
<td>2M₂³</td>
<td>cc</td>
<td>5.226</td>
<td>9.076</td>
<td>21.41</td>
<td>99.48</td>
<td>90.00</td>
<td>90.00</td>
<td>1001.6</td>
</tr>
<tr>
<td></td>
<td>C₁</td>
<td>5.226</td>
<td>9.076</td>
<td>63.37</td>
<td>91.36</td>
<td>90.00</td>
<td>90.00</td>
<td>3004.9</td>
</tr>
<tr>
<td></td>
<td>pHe</td>
<td>5.226</td>
<td>5.237</td>
<td>63.37</td>
<td>91.18</td>
<td>90.00</td>
<td>119.93</td>
<td>1502.6</td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td>5.226</td>
<td>5.236</td>
<td>21.30</td>
<td>84.12</td>
<td>82.95</td>
<td>60.07</td>
<td>500.8</td>
</tr>
<tr>
<td>3A₁²#</td>
<td>cc</td>
<td>5.350</td>
<td>9.276</td>
<td>30.17</td>
<td>95.72</td>
<td>90.00</td>
<td>90.00</td>
<td>1489.8</td>
</tr>
<tr>
<td></td>
<td>C₁</td>
<td>5.350</td>
<td>9.276</td>
<td>90.06</td>
<td>89.84</td>
<td>90.00</td>
<td>90.00</td>
<td>4469.4</td>
</tr>
<tr>
<td></td>
<td>pHe</td>
<td>5.350</td>
<td>5.354</td>
<td>90.06</td>
<td>86.86</td>
<td>90.00</td>
<td>120.12</td>
<td>2226.9</td>
</tr>
<tr>
<td></td>
<td>pRc</td>
<td>30.183</td>
<td>30.183</td>
<td>30.17</td>
<td>10.18</td>
<td>10.18</td>
<td>10.17</td>
<td>744.9</td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td>5.350</td>
<td>5.354</td>
<td>30.17</td>
<td>94.95</td>
<td>90.00</td>
<td>119.97</td>
<td>744.9</td>
</tr>
<tr>
<td>3A₁³</td>
<td>cc</td>
<td>5.350</td>
<td>9.270</td>
<td>30.17</td>
<td>95.84</td>
<td>90.00</td>
<td>90.00</td>
<td>1488.5</td>
</tr>
<tr>
<td></td>
<td>C₁</td>
<td>5.350</td>
<td>9.270</td>
<td>90.04</td>
<td>89.96</td>
<td>90.00</td>
<td>90.00</td>
<td>4465.5</td>
</tr>
<tr>
<td></td>
<td>pHe</td>
<td>5.350</td>
<td>5.352</td>
<td>90.04</td>
<td>89.97</td>
<td>90.00</td>
<td>119.99</td>
<td>2233.0</td>
</tr>
<tr>
<td></td>
<td>pRc</td>
<td>30.17</td>
<td>30.17</td>
<td>30.17</td>
<td>10.18</td>
<td>10.18</td>
<td>10.17</td>
<td>744.3</td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td>5.350</td>
<td>5.352</td>
<td>30.17</td>
<td>95.06</td>
<td>90.00</td>
<td>119.99</td>
<td>744.3</td>
</tr>
<tr>
<td>6A₁⁶</td>
<td>cc</td>
<td>5.328</td>
<td>9.228</td>
<td>59.71</td>
<td>92.95</td>
<td>90.00</td>
<td>90.00</td>
<td>2931.9</td>
</tr>
<tr>
<td></td>
<td>C₁</td>
<td>5.328</td>
<td>9.228</td>
<td>178.89</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
<td>8795.4</td>
</tr>
<tr>
<td></td>
<td>pHe</td>
<td>5.328</td>
<td>5.328</td>
<td>178.89</td>
<td>90.00</td>
<td>90.00</td>
<td>120.00</td>
<td>4379.8</td>
</tr>
<tr>
<td></td>
<td>pRc</td>
<td>59.71</td>
<td>59.71</td>
<td>59.71</td>
<td>5.11</td>
<td>5.11</td>
<td>5.11</td>
<td>1467.5</td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td>5.328</td>
<td>5.328</td>
<td>59.71</td>
<td>87.45</td>
<td>87.45</td>
<td>60.00</td>
<td>1466.1</td>
</tr>
</tbody>
</table>

8cc: conventional; pHe: pseudohexagonal cell (hexagonal axes); rc: reduced cell (Le Page, 1982); pRc: pseudo-rhombohedral cell (rhombohedral axes). ¹Takeda and Burnham (1969); ²Zhukhlistov et al. (1973); ³Ni and Hughes (1996); ⁴Ross et al. (1966); ⁵Borutskiy et al. (1987); ⁶Zhukhlistov et al. (1993) (Z symbols: 626264). *Angular parameters modified from Ross et al. (1966), as described in the text.

cells along c axis the C₁ cell is obtained.

Successive lattice planes are shifted by 1/3 of the short (Class a) and long (Class b) diagonal of the two-dimensional mesh built on (a₁, a₂) axes. Therefore, for Class b polytypes a pseudo-rhombohedral primitive cell can be chosen, having (almost) the same volume of the reduced cell (Fig. 3B). In Table 2 the cell parameters for the above-listed three cells, the pseudo-rhombohedral cell and the reduced cell are calculated for three examples of 2M₂ polytype, two examples of 3A₁ polytype and one example of 6A₁ polytype, starting from the refined conventional cells, as taken from the literature. Notwithstanding the different crystal chemistry, the pseudo-rhombohedral symmetry is followed even more closely
than the other approximated symmetries. The general reflection conditions for the rhombohedral lattice in hexagonal axes are: \(-h+k+l = 3n\). When expressed in the \(C\) setting, they become: \(-3h+k+2l = 6n\). Taking into account the \(C\) centring condition, they correspond to \(l(\text{mod } 3) = k(\text{mod } 3)\) \([l = k(\text{mod } 3) + 3n, n \text{ integer}]\), which is just an alternative expression of the condition of integral indices given in Table 1 for \(^{bT}\) setting.

If the position of a layer is uniquely defined by the position of the adjacent layers and by the so-called vicinity condition (VC), which states the geometrical equivalence of layer pairs, the resulting structure is fully ordered. If, on the other hand, more than one position is possible that obeys the VC, the resulting structure is an OD structure\(^3\) and the layers building it are called OD layers. The choice of the OD layers in general is not absolute (Grell, 1984). Both fully ordered structures and OD structures share the common name of VC structures (Dornberger-Schiff, 1964, 1966, 1979; Đurovič, 1997). While OD structures are polytypes, not all polytypes may be considered OD structures, since not all polytypes obey the VC (Zvyagin, 1993).

All OD structures, even of different substances, built according to the same symmetry principle, belong to an OD groupoid family: this is an abstract family, whose members are the groupoids describing the symmetry of the substances sharing the same symmetry principle. Then, the OD structures of the same substance built on the same structural principle belong to one and the same family: the members of a family are individual, real structures (Đurovič and Weiss, 1986). Superposition structure is called a fictitious, average structure obtained from a Fourier series calculated with a three-dimensional subset of diffractions corresponding to a subgroup of translations in the reciprocal lattice. An \(n\)-fold superposition structure is obtained from a translation subgroup of order \(n\) (Dornberger-Schiff, 1964, 1966; Đurovič, 1994b). The basis vectors of a superposition structure are called superposition vectors: they are obtained by completing the partial symmetry operations of a space groupoid to total symmetry operations of a space group (Fichtner, 1977).

Among the possible superposition structures, the one in which all the possible positions of all OD layers are simultaneously realized is called family structure (Đurovič, 1994b). All the diffractions corresponding to the family structure are sharp and common to all the members of the family and are called family reflections (or family diffractions). The remaining ones are called non-family reflections and are typical of each polytype; they can be sharp or diffuse, depending whether the polytype is ordered or not (Đurovič, 1992, 1997; Đurovič and Weiss, 1986).

Within Pauling model, the family structure is a 9-fold superposition structure that corresponds to superpositions \(\pm a/3\) and \(\pm b/3\); its symmetry is \(P(6/m)mm\) (Dornberger-Schiff \textit{et al}, 1982). To any of the atoms in the layer, eight additional atoms are generated in the family

\(^3\)OD stands for “Order-Disorder”. However, OD phenomena are of completely different nature from the order-disorder phenomena in alloys.
structure, with coordinates \((x \pm 1/3, y); (x, y \pm 1/3)\) and \((x \pm 1/3, y \pm 1/3)\). The family reflections are those with \(h = 0(\text{mod } 3)\) and \(k = 0(\text{mod } 3)\) and the subgroup of translation has order 9.

Since the layer stagger is \(\text{dil} / 3\), the superposition vectors of Pauling model \((\pm a / 3 \text{ and } \pm b / 3)\) complete the partial symmetry operations of space groupoids to total symmetry operations of space groups after one single layer. Therefore, the period along \(c\) axis of the family structure is \(c_0 = 1/e_1 = c_1 m \sin \beta_1 m\) and corresponds to the vertical distance between two closest interlayer cations. The basis vectors of the family structure are \(A_1 = a_1 / 3, A_2 = a_2 / 3, C = c_0\) (Backhaus and Đurović, 1984; Đurović et al., 1984; Đurović, 1994b).

Within the trigonal model two subfamilies, \(A\) and \(B\), and thus two OD groupoid families exist. In subfamily A polytypes, next layers are rotated by \(2n60^\circ\) and the coordination polyhedra for the interlayer cations are trigonal antiprisms; the symmetry of the tetrahedral OD layer is \(P(3)1m\). In subfamily B polytypes, next layers are rotated by \((2n+1)60^\circ\) and the coordination polyhedra for the interlayer cations are trigonal prisms; the symmetry of the tetrahedral OD layer is \(P(6)2m\). For both subfamilies the family structure is a 3-fold superposition structure and corresponds to superpositions \(\pm b / 3\). To any of the atoms in the layer, two additional atoms are generated in the family structure, with coordinates \((x, y \pm 1/3)\). The family reflections are those with \(k = 0(\text{mod } 3)\) and the subgroup of translation has order 3. The superposition vectors \(\pm b / 3\) complete the partial symmetry operations of space groupoids to total symmetry operations of space groups after three layers in case of subfamily A, but after two layers in case of subfamily B. The basis vectors for the family structure are thus \(A_1 = (a_1 + 2a_2), A_2 = -2a_1 + a_2\), \(C\). For subfamily A, \(C = 3c_0\); for subfamily B \(C = 2c_0\). The symmetry of the family structure is \(H_R31m\) (where the subscript \(R\) indicates that the smaller cell is rhombohedral) for subfamily A, and \(H_{6y}/mcm\) for subfamily B (Đurović, 1994b). The adoption of the \(H\)-centred cell permit to describe the family structures and the real structures in the same axes, but additional absences appear in the diffraction pattern (Smrček et al., 1994).

Under the trigonal model, a third kind of mica polytypes exists, in which rotations by both \(2n60^\circ\) and \((2n+1)60^\circ\) appear. These polytypes are called mixed-rotation polytypes (S. Đurović, personal communication) and contain both kinds of interlayer coordination polyhedra, violating the VC. It follows that they are non-OD polytypes, unless the ditrigonal rotation angle is zero. A few examples of them are known (for a short review see Nespolo, 1998) but the limited accuracy of the refinements does not give information on the angle of ditrigonal rotation.

The family reflections of the 9-fold family structure are common to all polytypes of the same mineral group (Zvyagin, 1967; Đurović, 1994b) and are thus not useful for the purpose of distinguishing individual polytypes. On the other hand, as shown below, reflections corresponding to \(h \neq 0(\text{mod } 3)\) and \(k = 0(\text{mod } 3)\) (family reflections of the 3-fold family structure) permit to distinguish whether a polytype belongs to subfamily A or B or it is a mixed-rotation polytype.

The examination of the family reflections and of the non-family reflections belonging to \((0kl)\) plane, which are common to all polytypes with the same projection on the \((b, c)\) plane, are usually enough to identify any polytype, except homometric structures (Weiss and Wiewióra, 1986; Đurović, 1992). However, due to the large number of possible stacking sequences, the solution of the stacking sequence of long period polytypes can be strongly challenging. The
analysis of the periodicity of the intensity distribution (Takeda, 1967; Sadanaga and Takeda, 1969; Takeda and Sadanaga, 1969; Takeda and Ross, 1995; Nespolo et al., 1999b) for non-family reflections represents the most suitable and powerful tool to solve the stacking sequence of mica polytypes. However, in order to apply this method, the presence of twinning has to be excluded. Hereafter, general criteria to confirm or exclude the presence of twinning by reticular pseudo-merohedry are derived.

5. Symbolic Description of Mica Polytypes.

Several symbolic descriptions of mica polytypes have been proposed by different authors. For the purposes of the present research, a space-fixed reference is needed, and descriptive symbols linked to it are the most suitable ones. These requirements are fulfilled by the symbols developed by Zvyagin and co-workers (Zvyagin et al., 1979, Zvyagin, 1985; Zhukhlistov et al., 1990), hereafter labelled Z symbols, which give the absolute orientations and the relative displacements of mica half-layers and are linked to the C₁ setting (Fig. 4). Looking at the sequence of layers always in the same direction, the vector connecting the origin of the O sheet with the nearest interlayer site and vice versa is called intralayer displacement. Its projection on the (001) plane has length \(l/3 \). Mica polytypes are obtained by stacking the M layer rotated by \(n60^\circ \) (0 ≤ \(n \) ≤ 5) and shifted along c (Smith and Yoder, 1956). There are thus six possible orientations for the M layer, indicated by the six structure-related \(a_i \) axes (i = 1–6). The projection of the intralayer displacement is indicated by the Z symbol \(i \) (i = 1, 2, ... 6) when the \(a_i \) axis is parallel to the space-fixed axis a (Fig. 4) (Zvyagin, 1967; Zhukhlistov et al., 1990). Since Z symbols are oriented symbols, their parity (odd or even) is commonly called orientation parity (Zvyagin, 1997). The \((a, b) \) components \((s_{x}, s_{y}) \) of intralayer displacements are given in Table 3. The total displacement vector for each layer (Z vectors, hereafter) is finally obtained by taking

<table>
<thead>
<tr>
<th>Z symbol</th>
<th>((s_{x}, s_{y}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(1, 0)</td>
</tr>
<tr>
<td>4</td>
<td>(-1, -1)</td>
</tr>
<tr>
<td>5</td>
<td>(1, -1)</td>
</tr>
<tr>
<td>6</td>
<td>(-1, 0)</td>
</tr>
<tr>
<td>1</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>2</td>
<td>(-1, 1)</td>
</tr>
</tbody>
</table>
twice the intralayer vectors*4; their \((a, b)\) components are \((2s_x, 2s_y)\) (Table 3). Then, since
\(\pm 2/3\) is translationally equivalent to \(\mp 1/3\), in practice the \((a, b)\) components of the Z vectors
are the same as those of the intralayer displacements, but with the signs exchanged.

The projection \(c_n\) is translationally equivalent to \((0, 0)\) (orthogonal polytypes), \((\pm 1/3, \pm 1/3)\) (Class a polytypes) and \((0, \pm 1/3)\) (Class b polytypes). The correct space orientation of the structural model is obtained by rotating it around the normal to \((001)\) until
\[c_n = (1 \\mp 1/3, 0)\] (Class a) and \[c_n = (0, 1/3)\] (Class b). However, three and six orientations exist respectively for orthogonal and Class b polytypes that correspond to the same \(c_n\). They are equivalent for hexagonal, trigonal and triclinic polytypes but not for orthorhombic and monoclinic ones. The correct orientation can be evaluated taking into account the transformation rules between Z symbols (Zvyagin, 1974, 1997). In other words, the \((a, b)\) components of \(c_n\) projection are sufficient to judge the correctness of the structural model orientation only in case of
Class a polytypes (Nespolo et al., 1999b); however, they allow to establish in a simple way the rules relating the subfamily on one hand, and the Class and Subclass on the other hand. The \((a, b)\) components of the \(c_n\) projection of an \(N\)-layer polytype with respect to the space-fixed reference are simply obtained by summing the \((a, b)\) components of the Z vectors corresponding to the \(N\) layers. The following relations are easily established.

Subfamily A: Successive layers are related by \(2n60^\circ\) rotations only and thus they have the
same orientation parity; the \(x\) component of each stacking vector is either always \(-1/3\) (odd
orientation parity) or always \(+1/3\) (even orientation parity). As a consequence, in Series 0 \([n = 0\) in Eq. (1), i.e. polytypes with a number of layers not multiple of 3] the \(x\) component cannot be 0 and these polytypes all belong to Class a. Furthermore, Subclass 1 polytypes have
3\(K\)+1 layers and the \(x\) component of \(c_n\) is \(-1/3\) only if the layers have all odd orientation parity.
On the other hand, Subclass 2 polytypes have 3\(K\)+2 layers and the \(x\) component of \(c_n\) is
\(-1/3\) only if the layers have all even orientation parity. In Series higher than 0 the number of
layers building the polytypes is multiple of 3 and thus the \(x\) component of \(c_n\) is always 0.
Therefore, these polytypes either are orthogonal or belong to Class b.

Subfamily B: Successive layers are related by \((2n+1)60^\circ\) rotations only and thus they have
alternating orientation parity. Only polytypes with an even number of layers appear in this
subfamily. Besides, since layers with different orientation parity have opposite \(x\) component of
the \(c_n\) projection, it is never possible to have a Class a polytype.

Mixed-rotation polytypes: Since there is no definite rule for the layer orientation parity
sequence, in this case all the three kinds of polytypes (orthogonal, Class a, Class b) are possible.

Most of polytypes reported to date belong to subfamily A and, with few exceptions, they belong to Series 0: they are thus Class a polytypes. Two homogeneous subfamily B polytypes have been reported: \(2M_2\) polytype (Series 0 Class b) occurs with a relatively high
frequency in lithium micas; \(2O\) polytype (orthogonal) was found only twice, in the brittle
mica anandite (Giuseppetti and Tadini, 1972; Filut et al., 1985). Only a few examples of

*4 This relation is valid within the so-called homo-octahedral approximation, in which the origin of the
\(O\) sheet is always at the \(M1\) site (Nespolo et al., 1999b), but is not correct for the rare micas built by
layers with the origin of the \(O\) sheet in one of the cis-coordinated sites, which are not considered here.
mixed rotation polytypes have been found (a short review is in Nespolo, 1998).

6. Reflection Conditions

In the diffraction pattern of mica polytypes, systematic absences extensively appear besides those due to the space group, which correspond to the additional reflection conditions (Hahn and Vos, 1996). The number and positions of reflections along the reciprocal lattice rows corresponding to the family reflections (hereafter called family rows, for shortness) of the 3-fold family structure permit to identify whether a mica polytype is OD or not, and to which of the two subfamilies an OD polytype belongs. Besides, they are particularly useful in evaluating the possible presence of twins. With this purpose, the reflection conditions for family rows are here analytically derived. A straightforward way to obtain them is by writing the structure factor by means of Zyvagin’s functions A_j (j = 1-6), which represent the layer Fourier transform in the six possible orientations. These functions are expressed in the orthohexagonal cell of the C_1 setting and have the origin in the $M1$ site (Zvyagin, 1967). The structure factor can be written as (Nespolo and Kogure, 1998):

$$F(hkl) = \sum_{m=0}^{N'-1} A_m (hkl) \exp \left\{ 2\pi i \left[hu_{2m}(m) + ku_{1m}(m) + lu_{0m}(m) \right] \right\} \exp 2\pi i (hx_0 + ky_0)$$

(2)

where:

$$A(hkl) = \sum_{j=1}^{n} f_j \cos 2\pi \left[hx_{im}(N', j, 0) + ky_{im}(N', j, 0) + lz(N', j, 0) \right] = \sum_{j=1}^{n} f_j \cos 2\pi \left[h_{i,m} \gamma_1(N', j, 0) + k_{i,m} \gamma_2(N', j, 0) + l \gamma_3(N', j, 0) \right] = A_3(h_{i,m}k_{i,m})$$

(3)

$$\begin{bmatrix} x_{im}(N', j, 0) \\ y_{im}(N', j, 0) \end{bmatrix} = U_{3\rightarrow m}^{-1} \begin{bmatrix} x_3(N', j, 0) \\ y_3(N', j, 0) \end{bmatrix}$$

$$U_{3\rightarrow m} = (h_3 \ k_3 \ U_{3\rightarrow m})$$

(4)

$$u_z(m) = mN'$$

(5)

According to Arnold (1996), covariant and contravariant components are written as row matrices and column matrices respectively. $U_{3\rightarrow m}$ is the rotation matrix transforming a layer in orientation 3 into a layer in orientation i_m [see Table 1 in Takeda (1967)], where i_m is the Z symbol (1-6) of the m-th layer $(m = 0, N' - 1)$. $x_{im}(N', j, 0), y_{im}(N', j, 0)$ and $z(N', j, 0)$ are the x, y, z fractional coordinates of the j-th atom inside the first layer $(m = 0)$, assumed in orientation i_m (z is not affected by the layer orientation). $u_z(m), u_x(m)$ and $u_y(m)$ are the x, y, z components of the stacking vector leading from the origin of the first layer to the origin of the m-th one. x_3 and y_3 are the coordinates of the whole structure with respect to the origin of the first layer and are non-zero only for non-centrosymmetric structures with a preferred origin: the only polytype having this feature reported to date is 3T, for which $x_0 = 0, y_0 = \pm 1/9$ (Zvyagin, 1967; Nespolo and Kogure, 1998). 6H polytype is another example, but it has never been reported. $h_{i,m}$ and $k_{i,m}$ indices as a function of h_3 and k_3 are given in Table 4.

In Eq. (3) the atomic coordinates depend upon the model chosen to describe mica layer. The Pauling model and the trigonal model differ only for the ditrigonal rotation, i.e. in the
coordinates of the basal oxygen atoms. The more
ditrigonal rotation is marked, the more the
intensities computed according to the two models
differ. However, the reflections conditions are not
significantly influenced by the diterigonal rotation,
and the appearance of weak reflections violating
the reflection conditions is mainly due to the vacancy
in one of the octahedral sites of dioctahedral
micans, and to the consequent distortions in the \(O \)
sheet (Rieder, 1968). Therefore, the reflection
conditions can be derived even applying the simplest Pauling model. The adoption of the
trigonal model in practice does not modify the reflection conditions, but it changes the defini-
tion of family reflections, and thus the interpretation of the diffraction pattern.

Labelling \(z_{OB} \) the \(z \) coordinate of basal oxygen atoms, \(z_{OH} \) that of hydroxyls and of
apical oxygen atoms, and inserting the atomic coordinates according to Pauling model
(Zvyagin, 1967), the \(A_3 \) function can be written as (Nespolo and Kogure, 1998):

\[
A_3(h_mk_m) = f_{M_1} + 2f_{M_2} \cos 2\pi k_m/3 + f_f \cos 2\pi (h_m/3 + l/2N') + \\
+ 2f_f (1 + 2\cos 2\pi k_m/3) \cos 2\pi (h_m/3 + l_{OH}/N') + \\
+ 4f_f \cos 2\pi (h_m/3 + l_{OH}/N') \cos 2\pi k_m/3 + \\
+ 2f_f \cos 2\pi (-h_m/6 + l_{OB}/N') \cos 2\pi (h_m/12 + l_{OB}/N') \cos 2\pi k_m/4 \tag{6}
\]

Peculiarities of the cation composition are in the atomic scattering factor. \(4f_f \) is a short
notation that depends upon the actual occupation of \(T \) sites; \(f_f \) represents the atomic scattering
factor of the interlayer cations. In Eq. (2) \(u_x \) and \(u_y \) are obtained in the following way.
The origin of each layer is at the \(M1 \) site, \(i.e. \) in the middle point of the corresponding \(Z \) vector.
The origin shift from the first to the \(p-th \) layer is obtained through summation of the \(x, y \)
coordinates of the first and the \(p-th \) intralayer displacement vectors \((s_x, s_y) \) and those of
the \(Z \) vectors connecting them \((2s_x, 2s_y) \) (Table 3; Fig. 5). \(p \) is a running index that for orthogo-
nal polytypes takes the integral values from 2 to \(N \), while for non-orthogonal polytypes it
takes the integral values from 2 to \(3N \). \(u_x \) and \(u_y \) are given by Eq. (7) and the result is expressed
as 0, \(\pm 1/3 \) for both \(u_x \) and \(u_y \) by adding the \(C \)-centring vector \((1/2, 1/2) \) when necessary

\[
[u_x(p), u_y(p)] = [s_x(1), s_y(1)] + [s_x(p), s_y(p)] + \sum_{j=2}^{p-1} [2s_x(j), 2s_y(j)]. \tag{7}
\]

The ideal reflection conditions are obtained by looking for systematically repeated zero
values of \(F(hkl) \) in Eq. (2). By introducing three functions \((g_1, g_2, g_3) \); see Table 5) of \(h_m \)
and \(k_m \) defined by substituting in Eq. (6) \(h_m \) and \(k_m \) from Table 4, Eq. (6) can be rearranged
in a more suitable form:

\[
A_3[g_1(h_mk_m), g_2(h_mk_m), g_3(h_mk_m)] = f_{M_1} + 2f_{M_2} \cos 2\pi g_1 + f_f \cos 2\pi (g_2 + l/2N') + \\
+ 2f_f (1 + 2\cos 2\pi g_1) \cos 2\pi (g_2 + l_{OH}/N') + 4f_f \cos 2\pi (g_2 + l_{OH}/N') \cos (g_1) + \\
+ 2f_f \cos 2\pi (-g_2/2 + l_{OB}/N') + 2\cos 2\pi (g_2/4 + l_{OB}/N') \cos (g_3) \tag{6'}
\]

Table 4. \(h_m \) and \(k_m \) indices expressed
as function of \(h_3 \) and \(k_3 \), the \(h, k \) Miller
indices for a layer in orientation \(Z = 3 \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(h_m)</th>
<th>(k_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(h_3)</td>
<td>(k_3)</td>
</tr>
<tr>
<td>4</td>
<td>((h_3+k_3)/2)</td>
<td>((-h_3+k_3)/2)</td>
</tr>
<tr>
<td>5</td>
<td>((-h_3+k_3)/2)</td>
<td>((-h_3+k_3)/2)</td>
</tr>
<tr>
<td>6</td>
<td>(-h_3)</td>
<td>(-k_3)</td>
</tr>
<tr>
<td>1</td>
<td>((h_3+k_3)/2)</td>
<td>((h_3-k_3)/2)</td>
</tr>
<tr>
<td>2</td>
<td>((h_3-k_3)/2)</td>
<td>((h_3+k_3)/2)</td>
</tr>
</tbody>
</table>
Taking into account the C-centring condition \(h+k = 0 \mod 2 \), it is easy to verify that, when \(k = 0 \mod 3 \) (i.e. the family reflections of the 3-fold family structure), each of the seven terms in Eq. (6') takes the same absolute value independently from \(m \); on the other hand, the sign depends upon the parity of \(m \). It follows that (see also Zhuhklistov et al., 1990; Zvyagin, 1997):

\[
(A_3 = A_1 = A_2) = A'(A_6 = A_4 = A_2) = A' \quad [k = 0 \mod 3]
\]

(8)

The isomorphous substitutions and the cation ordering in the octahedral sheet (Pavese et al., 1997) modify the \(F \) value but do not invalidate Eq. (8). Besides, the dirigional rotation described by the trigonal model lowers the symmetry of the tetrahedral sheets from hexagonal to trigonal; this, again, has no effect on Eq. (8), since the identities stated by it regard \(A_m \) function related by \(2n60^\circ \) rotations. The reflection conditions however differ in the two subfamilies, since the relative disposition of layers differs.

Subfamily A polytypes are built by layers all with the same orientation parity. Therefore, Eq. (2) expressed for the family reflections only becomes:

\[
F(hkl) = [A(h_3k_3)] \sum_{m=0}^{N-1} \exp 2\pi i [hu_x(m) + ku_y(m) + lu_z(m)] + A'(h_3k_3) \sum_{m=0}^{N-1} \exp 2\pi i [hu_x(m') + ku_y(m') + lu_z(m')] \exp 2\pi i (hx_0 + ky_0)
\]

(2A)

Subfamily B polytypes are built by layers all with alternating orientation parity. Only polytypes with an even number of layers belong to this subfamily and Eq. (2) can be separated into two terms:

\[
F(hkl) = \left\{ A(h_3k_3) \sum_{m=0}^{N-1} \exp 2\pi i [hu_x(m) + ku_y(m) + lu_z(m)] + A'(h_3k_3) \sum_{m=0}^{N-1} \exp 2\pi i [hu_x(m') + ku_y(m') + lu_z(m')] \right\} \exp 2\pi i (hx_0 + ky_0)
\]

(2B)

where \(m \) corresponds to layers in odd orientation and \(m' \) to layers in even orientation [\(A \) and \(A' \) are given in Eq. (8)].

No similar simplification is in general possible for mixed-rotation polytypes, since the orientation parity of layers does not follow a precise rule.

The reflection conditions in the two subfamilies are derived in the Appendix, where the exponential term including \((x_0, y_0)\) is neglected. Taking into account that for non-orthogonal
polytypes only one out of three of the orthogonal l indices corresponds to integer monoclinic indices, the following conclusions are obtained:

1. along family rows with $h = 0 \pmod{3}$ (family rows of the 9-fold family structure) one reflection out of N always appears;
2. along family rows with $h \neq 0 \pmod{3}$ (family rows of the 3-fold family structure) one reflection out of N appears in case of subfamily A, but two equally spaced reflections out of N appear in case of subfamily B;
3. for mixed-rotation polytypes, rows with $h \neq 0 \pmod{3}$ are non-family rows and in general they show N reflections, some of which may be absent.

7. Family Reflections and Axial Settings.

Let us now consider the reciprocal superlattice built on the family reflections only. Family reflections with both h and $k = 0 \pmod{3}$ correspond to the 9-fold family structure, whose period along c is c_0. On the other hand, family reflections with $h \neq 0 \pmod{3}$ and $k = 0 \pmod{3}$ correspond to the 3-fold family structure; for it the period along c axis is $3c_0$ (subfamily A) or $2c_0$ (subfamily B). However, the family structure of subfamily A polytypes admits a primitive rhombohedral cell, and only one reflection appears in the c^*_1 repeat. The a^* and b^* axes of C_1 setting are common to all polytypes. Expressing the l index in the c^*_1 period, one reflection appears along family rows of the 9-fold family structure, but one, two and N reflections along the family rows of the 3-fold family structure only $[h \neq 0 \pmod{3}, k = 0 \pmod{3}]$ for subfamily A, subfamily B and mixed-rotation polytypes respectively.

The adoption of a suitable axial setting makes easier to match the appearance of the family reflections in the diffraction pattern of different polytypes. All the polytypes belonging to the same Series and the same Class can be indexed in a particular axial setting showing the same ideal angle as the conventional cell of the shortest-period polytype of that Series. This setting is called Fixed-angle setting and is easily obtained from 6S and ^{b}S. The choice of a common setting for polytypes belonging to different Series is geometrically not possible (Nespolo et al., 1997a; 1998). All the polytypes belonging to the same Series have the same ideal monoclinic angle in this setting. For the two Classes it is symbolized by $^{3\pi,b}F$ and $^{3\pi,a}F$, which for Series 0 are shortened in bF and aF (Nespolo et al., 1997a; 1998).

The l index of the node corresponding to the single reflection in the diffraction pattern of subfamily A polytypes is given in Eq. (A2) and (A4). The superlattice built on family reflections can be overlapped for all polytypes belonging to subfamily A only if it is rotated by 180° around the normal to the layer when comparing polytypes built by layers of opposite orientation parity (see Appendix) (Fig. 6). This is due to the fact that the rhombohedral primitive cell of the family structure for subfamily A polytypes is in the obverse setting for odd orientation parity of the layers, but in the reverse setting for even orientation parity (S. Đurović, personal communication). In Series 0 (to which belong most of the polytypes reported to date), all polytypes belonging to subfamily A are Class a polytypes. Polytypes belonging to Subclass 1 are always built by layers with odd orientation parity, whereas those belonging to Subclass 2 are
Analysis of family reflections of OD mica polytypes, and its application to twin identification

Subclass 2 (and thus described by layers with even orientation parity) polytype. The superlattice of both these polytypes obey the reflection condition \(l_{c_1} = (2N'3)h(\text{mod } N') \). The reciprocal superlattice built on family reflections of a polytype can be overlapped to the reciprocal superlattice of another polytype even belonging to another Series, but the orientation parity must be taken into account. Borutskiy et al. (1987) solved the stacking sequence of 3A_1 polytype by means of the oblique-texture electron diffraction technique, in which reciprocal lattice rows parallel to \(c^* \) with the same value of \(3h^2+k^2 \) appear on one and the same ellipsis (Zvyagin, 1967), but they mistook the orientation parity, giving Z symbols as 113.

Subfamily B polytypes show one reflection out of \(N \) along family rows of the 9-fold family structure, but two along those of the 3-fold family structure. However, polytypes of this subfamily either are orthogonal or belong to Class b, for which the non-right angle is \(\alpha \) (before the axes exchange) and the \(l_{c_1} \) index of the superlattice nodes does not depend on \(h \) (Eq. A6 in the Appendix). The reciprocal superlattice in this case matches for all polytypes (Fig. 7), which is consistent with the fact that the primitive cell of the family structure is hexagonal.

In mixed-rotation polytypes the family reflections are only those of the 9-fold family structure. Reflections corresponding to \(h \not\equiv 0(\text{mod } 3) \) and \(k = 0(\text{mod } 3) \) are non-family reflections always built by layers with even orientation parity. The \(\alpha \)F setting alternates the directions of \((a, b)\) and \((a^*, b^*)\) axes with the Subclass (Nespolo et al., 1997b, 1998) and is exactly the axial setting leading to the overlap of the superlattice built on family reflections. In higher Series, polytypes belonging to subfamily A can be orthogonal or Class b polytypes and there is no longer a biunivocal correspondence. For example, the 3A_1 (\(Z = 446 \)) polytype is a subfamily A Series 1 Class b Subclass 1 polytype described by layers with even orientation parity. The superlattice built on the family reflections of this polytype matches the superlattice built on the family reflections of 2M_1 polytype (\(Z = 24 \)), which is a subfamily A Series 0 Class a

*5 According to the indications of the IUCr Ad-Hoc committee (Guinier et al., 1984), lattice symbol for triclinic polytypes should be changed from \(Tc \) to \(A \) (Anorthic).
and they are influenced by the additional reflection conditions not in an unique way. However, these rows again convey important information, since their different appearance from those of polytypes belonging to the two subfamilies is indicative of mixed-rotation polytypes (see the examples in Kogure and Nespolo, 1999a,b).

8. Non-Family Reflections and Orthogonal Planes.

Once the kind of polytype (subfamily A, subfamily B or mixed-rotation) has been determined by analyzing the family reflections, the analysis of the intensity distribution along non-family rows allows the identification of the polytype, in case of single crystal. An ideal example of a diffraction pattern taken with a photographic technique, such as precession camera, is useful to illustrate the procedure. The crystal should be mounted as to have c* coincident with the dial axis, so that c* appears in all the photographs. Fig. 8 shows the six central planes which can be normally photographed by this technique, projected onto the (a*, b*) plane. These planes are divided into two groups, differing for the perpendicular separation between neighboring reciprocal lattice rows parallel to c*. One group consists of planes 0kl, hhl and hh*l: the separation between next reciprocal lattice rows is about 0.22Å⁻¹, i.e. about 4.6Å in direct space: it corresponds to d_{020}, ideally equal to d_{110}; in the following it will be indicated as d₁, for shortness. These planes contain non-family rows for k ≠ 0(mod 3) and correspond to the first, third, fifth, eighth... ellipses in the practice of oblique-texture electron diffraction (Zvyagin, 1967). The second group consists of planes h0l, h.3h.l and h.3 h.l: the separation between reciprocal lattice rows is about 0.38Å⁻¹, i.e. about 2.6Å in direct
Analysis of family reflections of OD mica polytypes, and its application to twin identification

space: it corresponds to \(d_{200}\), ideally equal to \(d_{130}\); in the following it will be indicated as \(d_2\), for shortness. For both subfamilies, these planes contain family rows only, whereas rows with \(h \neq 0 (\text{mod } 3)\) are non-family rows for mixed-rotation polytypes. This second group of planes correspond to the second, sixth, twelfth... ellipses (Zvyagin, 1967).

The planes corresponding to \(d_2\) permit to identify whether a polytype belongs to subfamily A, subfamily B or it is a mixed-rotation polytype. Then, from the intensities measured along one or more non-family rows in the planes corresponding to \(d_1\), the Periodic Intensity Distribution (PID) (Takeda, 1967; Sadanaga and Takeda, 1969; Takeda and Sadanaga, 1969; Takeda and Ross, 1995; Nespolo et al., 1999b) can be derived. PID corresponds to the Fourier transform of the stacking sequence and is obtained by removing from the structure factor the effect of the modulation by the single-layer Fourier transform:

\[
S^N(h) = \frac{G^N(h)}{G_0(h)} = \sum_{j=1}^{N} \exp(2\pi i (h \cdot t_j))
\]

where \(S^N\) is the PID for an \(N\)-layer polytype, \(G^N\) is the polytype Fourier transform, \(G_0\) the Fourier transform of the single layer, \(h = h,k,l\) and \(t_j\) is the \(j\)-th stacking vector. Comparison of observed and calculated PID values uniquely identifies the stacking sequence. However, the presence of twinning must be clearly excluded before applying PID and for this purpose the analysis of the geometry of the diffraction pattern is of primary importance (Nespolo and Takeda, 1999). For the practical purpose of interpreting the diffraction pattern, hereafter a plane is said to be orthogonal if it has an orthogonal appearance, i.e. if a reflection corresponding to \(l_{C_1} = 0\) (family rows) or \(l_{C_1} = 0 (\text{mod } 3N)\) (non-family rows) appears on each row parallel to \(c^*\). Since the \(l_{C_1} = 0\) reflection on non-family rows may be weak or even absent, a different definition is given for the two kinds of rows. The number and features of the orthogonal planes depend both on the Class (lattice features) and on the subfamily (OD character). These are easily obtained by taking into account that subfamily B polytypes and subfamily A Series > 0 polytypes never belong to Class a, whereas subfamily A Series 0 polytypes always belong to Class a.

1. **Orthogonal polytypes** : In case of subfamily A polytypes, the three planes corresponding to \(d_1\) only are orthogonal, according to the above definition. For subfamily B and mixed-rotation polytypes, all the six planes are orthogonal. 3T is the only orthogonal subfamily A polytype reported to date: it occurs with relatively high frequency. 2O polytype is the only orthogonal subfamily B polytype reported to date.

2. **Class a polytypes**: One orthogonal plane exists, which corresponds to \(d_1\); it is \((0kl)\).

3. **Class b polytypes**: No plane corresponding to \(d_1\) can be orthogonal. In subfamily A polytypes (Series > 0) the family reflections for which \(h \neq 0 (\text{mod } 3)\) never correspond to \(l_{C_1} = 0 (\text{mod } 3)\) (Eq. A2 and A4 in the Appendix) and no orthogonal plane appears. In subfamily B, family reflections for which \(h \neq 0 (\text{mod } 3)\) show two reflections, one of which always corresponds to \(l_{C_1} = 0 (\text{mod } 3)\) (Eq. A6 in the Appendix): the three planes that correspond to \(d_2\) are thus orthogonal. In mixed-rotation polytypes, rows for which \(h \neq 0 (\text{mod } 3)\) correspond to non-family reflections and on them in general N reflection appear. On
the basis of the relation between l indices in bT and in C_1 settings (bT and l_{C_1}; Table 1),
the three planes corresponding to d_2 are orthogonal also in this case.

Attention should be paid to the indexing of subfamily A Class b polytypes, since they
do not show any orthogonal plane (as defined above) in the diffraction pattern. This may
sometimes become a possible source of confusion. For example, Ross et al. (1966) reported
$3A_1$ polytype ($Z=446$) in a syderophilite sample, giving the angular parameters as $\alpha=92^\circ 50', \beta=94^\circ 58', \gamma=90^\circ$. $3A_1$ is a subfamily A Series 1 Class b polytype: therefore, in bT
setting it has $\alpha>90^\circ$, $\beta=\gamma=90^\circ$. The angular parameters reported by Ross et al. (1966)
correspond to the two angles between c^* and [201]* and between c^* and [021]* respectively.
On the basis of the linear cell parameters given by the authors, the correct angles are $\alpha=95^\circ 43', \beta=\gamma=90^\circ$, calculated by applying the law of direction cosines. The value of α has to
be compared with the ideal value $\alpha=95^\circ 53'$, obtained by the metric relations in Table 1.

Due to the existence of pseudo-symmetries, micas can undergo twinning of more than
one kind.

The most common twinning is by reticular pseudo-merohedry. It modifies the geometry of
the diffraction pattern and its presence may be identified by careful inspection of the diffraction
pattern itself. Reticular (pseudo)-merohedry twin elements are (pseudo)-symmetry elements
belonging to a multiple lattice, which corresponds to a crystal system with higher symmetry
than that to which the crystal belongs (Friedel, 1904); therefore both holohedral and merohedral
crystals may undergo twinning by reticular (pseudo)-merohedry with the same twin laws.

In addition to these, merohedral crystals may undergo twinning by merohedry, the twin
elements being the symmetry elements for the crystal lattice not contained in the crystal point group.

Finally, when the crystal lattice is close to a higher-symmetry crystal system, both holohedral
and merohedral crystals may undergo twinning by pseudo-merohedry, the twin elements
being the pseudo-symmetry elements for the higher-symmetry lattice not contained in the crystal
point group. In micas this occurs for triclinic polytypes (both Class c), for Class b polytypes
(both triclinic and monoclinic) and for metrically orthorhombic polytypes. Triclinic polytypes
possess a pseudo-monoclinic conventional cell and thus both 2 and m may behave as twin elements
by pseudo-merohedry, of which only one is independent in case of crystals belonging to
point group 1. Class b polytypes admit a pseudo-rhombohedral primitive cell, and metrically
orthogonal polytypes admit a pseudo-hexagonal primitive cell based on (a_1, a_2) axes.

The resulting twin elements for mica polytypes are shown in the following scheme,
where the directions are given in the C_1 setting.
1. For metrically orthorhombic polytypes, four two-fold axes in the (001) plane, namely
$[110], [110], [310], [310]$, and the four planes quasi-normal to these axes, namely $(130),
(130), (110), (110)$, are pseudo-merohedry twin elements. They may give rise to corresponding twins as defined by Friedel (1904, 1926). For trigonal and hexagonal polytypes
twinning is by merohedry; however, depending upon the crystal class, some of the above elements may belong to the point group symmetry of the crystal; in such case they are no longer twin elements (Nespolo et al., 1997a).

2. For Class a polytypes the twin lattice, based on \(C_1 \) cell, contains only the nodes belonging to one plane out of three. Twinning is by reticular pseudo-merohedry, with twin index 3. The twin elements are the four pairs given for orthorhombic polytypes, to which the two-fold axis along \([100]\) and the reflection plane \((100)\) (which are mutually perpendicular for metrically monoclinic polytypes) have to be added. For polytypes belonging to crystal class \(\{\text{m}\} \), \([010]\) is merohedry twin axis; for polytypes belonging to crystal class 2, \((010)\) is merohedry twin plane. For triclinic polytypes, \([010]\) and \((010)\) are merohedry twin elements if the polytypes are metrically monoclinic; they are pseudo-merohedry twin elements otherwise. Of these, only one is independent if the crystal belongs to point group \(\overline{1} \).

3. For Class b polytypes the pseudo-symmetry elements of the pseudo-rhombohedral primitive cell not contained in the crystal point group are pseudo-merohedry twin elements. They are the two axes \([110]\) and \([\overline{1}10]\) and the two planes \((130)\) and \((\overline{1}30)\). The symmetry elements of the lattice based on the \(C_1 \) cell not belonging either to the (pseudo)-monoclinic conventional cell or to the pseudo-rhombohedral primitive cell are reticular pseudo-merohedry twin elements. They are the three axes, \([310]\), \([\overline{3}10]\) and \([010]\), and the three planes \((110)\), \((1\overline{1}0)\) and \((010)\), with the last axis and plane mutually perpendicular for metrically monoclinic polytypes. For polytypes belonging to crystal class \(\{\text{m}\} \), \([100]\) is merohedry twin axis; for polytypes belonging to crystal class 2, \((100)\) is merohedry twin plane. For triclinic polytypes, \([100]\) and \((100)\) are merohedry twin elements if the polytypes are metrically monoclinic; they are pseudo-merohedry twin elements otherwise. Of these, only one is independent if the crystal belongs to point group \(\overline{1} \).

The individuals of a mica twin related by the above listed twin elements are rotated each other by \(n \times 60^\circ \pm 2\varepsilon (0 \leq n \leq 5) \); \(\varepsilon \) depends upon the obliquity of the twin, but is small enough to be neglected for practical purposes (Donnay et al., 1964; Nespolo et al., 1997a,b). The relative rotation between two individuals twinned according to a given twin law is obtained by applying a symmetry or pseudo-symmetry operator of the structure to the corresponding twin operator. Results are shown in Table 6, where the relative rotations are given neglecting \(\varepsilon \); the precise values, in which the factor \(\pm 2\varepsilon \) has to be included, are only slightly different.

<table>
<thead>
<tr>
<th>Twin operation</th>
<th>relative rotation</th>
<th>kind of twinning</th>
<th>Class a</th>
<th>Class b</th>
</tr>
</thead>
<tbody>
<tr>
<td>([310]_R/(110))</td>
<td>240°, 300°</td>
<td>Reticular pseudo-merohedry</td>
<td>(\text{Pseudo-merohedry})</td>
<td>(\text{Pseudo-merohedry})</td>
</tr>
<tr>
<td>([110]_R/(110))</td>
<td>120°, 60°</td>
<td>Reticular pseudo-merohedry</td>
<td>(\text{Pseudo-merohedry})</td>
<td>(\text{Pseudo-merohedry})</td>
</tr>
<tr>
<td>([110]_R/(130))</td>
<td>300°, 240°</td>
<td>Reticular pseudo-merohedry</td>
<td>(\text{Reticular pseudo-merohedry})</td>
<td>(\text{Reticular pseudo-merohedry})</td>
</tr>
<tr>
<td>([110]_R/(130))</td>
<td>60°, 120°</td>
<td>Reticular pseudo-merohedry</td>
<td>(\text{Reticular pseudo-merohedry})</td>
<td>(\text{Reticular pseudo-merohedry})</td>
</tr>
<tr>
<td>([100]_R/(100))</td>
<td>180°, 0°</td>
<td>Reticular pseudo-merohedry</td>
<td>(\text{Merohedry})</td>
<td>(\text{Reticular pseudo-merohedry})</td>
</tr>
<tr>
<td>([010]_R/(010))</td>
<td>0°, 180°</td>
<td>Merohedry*</td>
<td>(\text{Reticular pseudo-merohedry})</td>
<td>(\text{Reticular pseudo-merohedry})</td>
</tr>
</tbody>
</table>

*In metrically triclinic polytypes these twin operations correspond to pseudo-merohedry.
10. Diffraction Patterns from Twins.

The twin reciprocal lattice results from the overlap of the crystal reciprocal lattices (Buerger, 1954). Rows with different \(h \), \(k \) in the crystal-fixed reference coalesce into a single twin row. For non-orthogonal polytypes the metric relations \(l_{C_1} = h \, (\text{mod } 3) \) (Class \(a \)) and \(l_{C_1} = k \, (\text{mod } 3) \) (Class \(b \)) hold (see Table 1). Depending upon the twin law(s) (and thus the relative orientation of twinned individuals), non-family reflections from different individuals may either overlap or take positions separated by \(c^{*}_1/3N \), where \(N \) is the number of layers in the repeat unit (Table 1). When two of the three positions in a \(c^{*}_1/N \) repeat are occupied, the presence of twinning is immediately evident, because of the sequence of two present and one absent reflections. On the other hand, when all the three positions are occupied, the presence of twinning is not evident: in this case the number of reflections in a \(c^{*}_1 \) repeat of a non-orthogonal twinned \(N \)-layer polytype is the same as that of an untwinned \(3N \)-layer polytype (apparent polytypism; Takano and Takano, 1958). Therefore, when the number of reflections in a \(c^{*}_1 \) repeat is multiple of 3, the possible presence of twinning by reticular pseudo-merohedry has to be considered.

If twinning is not recognized, the PID analysis may in principle lead to accept a wrong stacking sequence. PID determines the stacking sequence by looking for the best match of the PID values derived from the measured intensities and those computed from the stacking sequence of all polytypes with the same number of layers. The quality of the match (\(R \) factor) depends first of all on the quality of the crystal and it is in general lower than for structure refinement. The PID computed from \(3N \) reflections coming from three (or more) individuals still corresponds to a periodic function and its values depend upon the volume ratio of the twinned individuals. If they sufficiently match the PID computed from the stacking symbols of one of the \(3N \)-layer polytypes, the corresponding stacking sequence might be accepted as the correct one. Nespolo and Takeda (1999) have shown that the opposite case is also possible: assuming the presence of twinning where it is absent and computing PID from a subset of reflections, the diffraction pattern can be wrongly ascribed to a shorter-period polytype. The presence of twinning has thus to be carefully examined before applying PID analysis.

Twining is not at all a rare phenomenon in micas, as shown by several twinned crystals described even in Goldschmidt’s atlas (1918). The low number of diffractional studies of mica twins is perhaps due to the difficulties of distinguishing them from longer period polytypes. However, in most cases the presence of twinning by reticular pseudo-merohedry can be confirmed or excluded by a simple inspection of the geometry of the diffraction pattern.

Nespolo et al. (1997b) have shown that for \(1M \) mica the twin operations lead to classify reciprocal lattice rows into three kinds, which are not mixed by the twin operations. In case of twinning by reticular (pseudo)-merohedry, since the twin lattice is based on the \(C_1 \) cell for all polytypes, the same classification holds in general. One of these three kinds of rows, called \(D \) (for “double”), corresponds to the family reflections of the 3-fold family structure only \([h \neq 0 \, (\text{mod } 3), k = 0(\text{mod } 3)] \). Twinning of non-orthogonal polytypes modifies the appearance of
these rows. The number and the position of reflections along these rows depend upon the
number of layers and the kind of polytype (subfamily A, subfamily B, mixed-rotation) and
have to be evaluated in the c^*_1 repeat.

1. Twinning of subfamily A polytypes in which individuals are rotated by $(2n+1)60^\circ$
corresponds to twinning by reticular pseudo-merohedry. It produces separation of the single
reflection on D rows from each individual into two reflections, corresponding to $l(c^*_1) = 1$(mod 3) and $l(c^*_1) = 2$(mod 3); no reflection appears corresponding to $l(c^*_1) = 0$(mod 3); this pattern is clearly different from that of a subfamily B polytypes, where two equally spaced reflections appear. Besides, if rotation is by $\pm 60^\circ$, for Series 0 polytypes (Class a) the
orthogonal plane of one individual necessarily overlaps a non-orthogonal plane of another
individual and in the resulting diffraction pattern two or three orthogonal planes appear, cor-
responding to d_i.

2. Twinning of subfamily A polytypes in which individuals are rotated by $2n60^\circ$ corresponds
twinning by reticular pseudo-merohedry in case for Class a (Series 0), but to pseudo-
merohedry, in case of Class b (Series > 0). It produces overlap of the single reflection on
D rows from each individual; no reflection appears corresponding to $l(c^*_1) = 0$(mod 3).
However, for Series 0 (Class a) polytypes this twinning produces two or three orthogonal
planes corresponding to d_i. When three such planes appear (three or more twinned indi-
viduals), the geometrical features of the diffraction pattern are the same as for orthogonal
Series 1 polytypes. This situation corresponds to the well known example of 3T polytype
$vs.$ twinned 1M, which - at least for dioctahedral micas - can be distinguished by careful
examination of the appearance of weak reflections violating the reflection conditions ($e.g.$
Nespolo and Kogure, 1998). If the twin involves only two individuals, next reflections
along non-family rows are unequally separated ($1/3$ and $2/3$) and two orthogonal planes
corresponding to d_i appear: the presence of twinning is thus easily recognized.

3. Subfamily B polytypes either are orthogonal or belong to Class b. In the second case only
three of the five pairs of twin laws correspond to twinning by reticular pseudo-merohedry.
However, the corresponding twin operations lead to the overlap of the two reflections on
D rows from each individual; no orthogonal plane appears corresponding to d_i, whereas the
three planes corresponding to d_2 are orthogonal. The presence of twinning is not evident.

4. For mixed-rotation polytypes D rows are non-family rows. For Class a polytypes, two
individuals rotated by 180° share one and the same orthogonal plane (0kl), but reflections
are unequally spaced. The presence of twinning is thus evident. In the other cases, two or
more orthogonal planes appear corresponding to d_1, as for subfamily A polytypes of the
same Class, but no orthogonal planes appear corresponding to d_2. The presence of twinn-
ing is again evident. For Class b polytypes the three planes corresponding to d_2 are
orthogonal and the presence of twinning is not evident.

In Tables 7a-7c the complete scheme of the identification process is shown. The
approximated relative rotations between twinned individuals are given: the corresponding
twin laws are easily obtained from Table 6. For Class a polytypes (which represent most of
the polytypes reported to date) the presence of twinning can be confirmed or excluded by
<table>
<thead>
<tr>
<th>Number of planes with orthogonal appearance</th>
<th>1 ([l_{C_1} \neq 0 \text{mod } 3])</th>
<th>2 ([l_{C_1} = 1 \text{mod } 3) and (2\text{mod } 3)]</th>
<th>(l_{C_1} = 0 \text{mod } N) and (N/2 \text{mod } N)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1((d_1)) Subfamily A Series 0 Class a untwinned polytype</td>
<td>——</td>
<td>——</td>
<td>Mixed-rotation Series 0 Class a untwinned polytype</td>
<td></td>
</tr>
<tr>
<td>3((d_1)) Subfamily A Series 0 orthogonal polytype untwinned or (\pm 120^\circ)-twinned</td>
<td>Subfamily A Series 0 orthogonal polytype ((\pm 60^\circ/180^\circ))-twinned polytype</td>
<td>——</td>
<td>——</td>
<td></td>
</tr>
<tr>
<td>3((d_2))</td>
<td>——</td>
<td>——</td>
<td>Subfamily B Series 0 Class b polytype untwinned or (\pm 120^\circ)-twinned polytype</td>
<td>Mixed-rotation Series 0 Class b polytype untwinned or (\pm 120^\circ)-twinned polytype</td>
</tr>
<tr>
<td>6 (both (d_1) and (d_2))</td>
<td>——</td>
<td>——</td>
<td>Subfamily B Series 0 orthogonal polytype</td>
<td>Mixed-rotation Series 0 orthogonal polytype</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of planes with orthogonal appearance</th>
<th>1 ([l_{C_1} \neq 0 \text{mod } 3])</th>
<th>2 ([l_{C_1} = 1 \text{mod } 3) and (2\text{mod } 3)]</th>
<th>(l_{C_1} = 0 \text{mod } N) and (N/2 \text{mod } N)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Subfamily A Series 1 Class b polytype untwinned or (\pm 120^\circ)-twinned</td>
<td>——</td>
<td>——</td>
<td>Mixed-rotation Class a: Series 1 untwinned polytype; Series 0 orthogonal polytype (180^\circ)-twinned</td>
<td></td>
</tr>
<tr>
<td>1((d_1)) Subfamily A Series 0 Class a polytype ((\pm 60^\circ/\pm 120^\circ))-twinned (two individuals)</td>
<td>Subfamily A Series 0 Class a polytype (180^\circ)-twinned</td>
<td>——</td>
<td>——</td>
<td></td>
</tr>
<tr>
<td>2((d_1)) Subfamily A Series 0 Class a polytype (\pm 120^\circ)-twinned (three individuals)</td>
<td>Subfamily A Series 0 Class a polytype (\pm 60^\circ)-twinned (two individuals)</td>
<td>——</td>
<td>Mixed-rotation Series 0 Class a polytype ((\pm 60^\circ/\pm 120^\circ))-twinned (two individuals)</td>
<td></td>
</tr>
<tr>
<td>3((d_1)) Subfamily A Series 0 Class a polytype (\pm 120^\circ)-twinned (three individuals)</td>
<td>Subfamily A Series 0 Class a polytype (\pm 60^\circ)-twinned (three individuals)</td>
<td>Subfamily A Series 1 orthogonal polytype ((\pm 60^\circ/180^\circ))-twinned</td>
<td>Mixed-rotation Series 0 Class a polytype ((\pm 60^\circ/\pm 120^\circ))-twinned (three individuals)</td>
<td></td>
</tr>
<tr>
<td>3((d_2))</td>
<td>——</td>
<td>——</td>
<td>Subfamily B Class b: Series 1 polytype untwinned or (\pm 120^\circ)-twinned polytype</td>
<td>Mixed-rotation Class b: Series 1 polytype untwinned or (\pm 120^\circ)-twinned polytype</td>
</tr>
<tr>
<td>6 (both (d_1) and (d_2))</td>
<td>——</td>
<td>——</td>
<td>Subfamily B Series 1 orthogonal polytype</td>
<td>Mixed-rotation Series 1 orthogonal polytype</td>
</tr>
</tbody>
</table>
Analysis of family reflections of OD mica polytypes, and its application to twin identification

<table>
<thead>
<tr>
<th>Number of planes with orthogonal appearance</th>
<th>Number of reflections in the cn repeat along reciprocal lattice rows corresponding to family reflections</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [(l_{c1} \neq 0 \text{mod } 3)]</td>
<td>Subfamily A Series n Class b polytype untwinned or ±120°-twinned</td>
<td>Subfamily A Series n-1 Class b polytype (+60°/180°)-twinned</td>
</tr>
<tr>
<td>1(d₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(d₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(d₁)</td>
<td>Subfamily A Series n orthogonal polytype untwinned or ±120°-twinned</td>
<td>Subfamily A Series n orthogonal polytype (+60°/180°)-twinned</td>
</tr>
<tr>
<td>3(d₂)</td>
<td></td>
<td>Subfamily B Class b: Series n polytype untwinned or ±120°-twinned; Series n-1 (+60°/180°)-twinned polytype</td>
</tr>
<tr>
<td>6(both d₁ and d₂)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

simple inspection of the geometry of the diffraction pattern. Special attention is however needed to distinguish a 3N-layer orthogonal polytype from the spiral twinning of three (or more) non-orthogonal N-layer Class a polytypes in which the individuals are rotated by 2n60°. For Class b subfamily A Series 1 polytypes the presence of reticular pseudo-merohedry twinning is also evident. In the other cases the presence of twinning cannot be confirmed or excluded by analyzing the geometry of the diffraction pattern.

11. Identification of the Stacking Sequence.

The procedure derived in the previous sections permits to confirm or exclude the presence of twinning for most common polytypes. In absence of twinning it is possible to identify the stacking sequence on an unknown polytype by analyzing the observed and computed values of the PID function. In principle, this comparison should be accomplished considering all the cyclic permutations and the inversion of the whole sequence of values, that means 2N comparisons for each possible stacking sequence of an N-layer polytype. However, by expressing both the computed values and the measured ones in the \(3n_3a_3^3b_3^3\)F settings, this necessity is removed and the number of cycles is thus reduced by the factor 1/(2N) (Nespolo et al., 1998).

The number of reflections along reciprocal lattice rows with \(h \neq 0 \text{mod } 3\) and \(k = 0\text{mod...
unequivocally identified the kind of polytype (subfamily A: Z symbols of the same parity; subfamily B: Z symbols of alternating parity; mixed-rotation: Z symbols of mixed parity). The most common polytypes belong to subfamily A; no inhomogeneous subfamily B have been reported to date; mixed-rotation polytypes only rarely occur. The number of polytypes with a given number of layers is by far larger in case of mixed-rotation polytypes. For example, there are 254.721 possible polytypes with 10 layers in the repeat unit. Of these, 572, 580 and 253.569 are subfamily A, subfamily B and mixed-rotation polytypes respectively. Of the 5,094,420 (2×10×254.721) comparisons that in principle are needed, consideration of the family reflections separates these possibilities into 11,440, 11,600 and 5,071,380 respectively; indexing in the \((3^a.a;3^b.b)\) settings further reduces these numbers to 572, 580 and 253.569 respectively. For a 10-layer subfamily A polytype only 572 comparisons are really necessary.

Twinning by merohedry does not modify the geometry of the diffraction pattern and should be investigated on the basis of the intensity analysis. In case of micas, the same is true also for twinning by pseudo-merohedry, because of the small obliquity of the twin (Donnay et al., 1964).

Twins by merohedry is subdivided into two classes (Catti and Ferraris, 1976). Class I includes twins for which the crystal Laue symmetry coincides with the lattice symmetry, and the twin operation belongs to the Laue symmetry of the crystal. The twin contains only two individuals, which are necessarily hemihedral crystals. Reflections related to the twin operation are equivalent under Friedel’s law and the presence of twinning cannot be recognized, unless the crystal is not centrosymmetric and anomalous scattering is used. On the other hand, class II includes twins for which the crystal Laue symmetry is lower than the lattice symmetry. At least part of the reflections related by the twin operation(s) are not equivalent even under Friedel’s law.

Twins of Class b mica polytypes in which the twin operations are (pseudo)-symmetry operations for the pseudo-rhombohedral primitive cell are class II twins, as defined by Catti and Ferraris (1976). Because of the very small obliquity of the twin (Donnay et al., 1964), the presence of twinning cannot be recognized by inspection of the geometry of the diffraction pattern. The possible presence of this kind of twinning potentially hinders the application of PID analysis to the diffraction pattern of a Class b polytype, since the reflections related by the twin operations are non-equivalent. The measured PID \(S_{\text{meas}}^N\) is thus a function of the PID of the individuals \((S_1^N, S_2^N,...)\). In case of two-individuals it can be written as (see Eq. 9):

\[
I_{\text{meas}}(h)=I_1(h)+I_2(h)=K\cdot\left[|G_1^N(h)|^2+|G_2^N(h)|^2\right]=K\cdot\left[|G_0(h)\cdot S_1^N(h)|^2+|G_0(h)\cdot S_2^N(h)|^2\right]
\]

\[
S_{\text{meas}}^N(h)=\left[|S_1^N(h)|^2+|S_2^N(h)|^2\right]^{1/2}
\]

where \(K\) is constant including all the corrections factors (Lorentz, Polarization, Transmission, Extinction, Scale). For subfamily A polytypes PID takes the same values along all the
non-family rows in planes corresponding to \(d_1\), but the origin of PID along these rows is a function of \(h\) and \(k\); besides, rows related by \((2n+1)60^\circ\) have an opposite sequence of the \(N\) values (Nespolo et al., 1999b). It follows that in Eq. (9) \(S_N^{N'}(h_1k_1l_1)c_1 = S_N^{N'}(h_2k_2l_2)c_1\), where \(h_1k_1\) and \(h_2k_2\) are related by \(\pm120^\circ\) rotations around the normal to the layer and \(l_2 = l_1 + m, m\) being an integer. The resulting \((S_N^{meas})^2\) is thus the sum of squares of two or more sequence of the same \(S_N\) but with a different origin along \(z\). The probability that \(S_N^{meas}\) matches the values computed from the stacking sequence of a different subfamily \(A\) polytype is rather low and the lack of a good match should be taken as a “danger signal” for the presence of twinning.

More intriguing is the presence of allotwinning, i.e. the oriented crystal association of different polytypes (Nespolo et al., 1999a). If two or more polytypes with the same number of layers and the same lattice symmetry are allotwinned, the \(S_N^{meas}\) is actually the composition of two or more different \(S_N\) and in principle it might sufficiently match the computed PID of a different polytype, again with the same number of layers and the same lattice symmetry. Further research is needed in order to develop general criteria to exclude the presence of allotwinning.

Appendix. Analytical derivation of the reflection conditions.

A.1 Subfamily A.

Having all the layers the same orientation parity, the \(u_z(m)\) component corresponds to the sequence 0, -1, 1,... (all-odd layers) or 0, 1-1 (all-even layers) (see Table 3); this regular alternation of the \(u_z\) component and the \(k = 0(\text{mod } 3)\) condition lead to simplify the exponential term in Eq. (2A). In order to mathematically treat in the same way both the orthogonal and the non-orthogonal polytypes, the number of layers in the unit cell of the \(C_1\) setting \((N')\) is here expressed as a function of an integer \(Q\). Orthogonal polytypes appear only in Series higher than 0 (i.e. when the number of layers is multiple of 3); for them \(N' = N = 3Q\). For non-orthogonal polytypes \(N' = 3N = 3Q\) and thus \(N = Q\); Eq. (2A) can be re-written as a function of \(Q\), being valid for both orthogonal and non-orthogonal polytypes, since in both cases \(N' = 3Q\). In the following, it will be shown that 1) for all polytypes belonging to this subfamily only, all but one reflections out of \(N\) are absent in all the rows parallel to \(c^*\) corresponding to family reflections; 2) the \(l\) index of the present reflection depends on \(h\); 3) the relation between \(l\) and \(h\) is different for polytypes built by all-odd and by all-even layers.

A.1.1 All-odd layers.

Eq. (2A) can be suitably simplified by separating the two cases with even and odd number of layers.

1. \(Q = 2M\). The first exponential is 1 [\(u_z(0)=u_z(0)=0\)] and the \((3Q/2)\)-th one is \((-1)^l\) \((u_z=0; u_z=1/2)\). To the \(m\)-th term \((m \neq 0)\) i.e. \(\exp2\pi[iu_z(m)h+u_z(m)]\), always corresponds the \((Q-m)\)-th term, i.e. \(\exp2\pi[i(-u_z(m)h-u_z(m))l\] and the sum is simply \(2\cos2\pi[u_z(m)h+u_z(m)]l\). Only the first half of the sequence \((0 \leq m \leq 3Q/2\) i.e. the first \(3Q/2+1\) terms) has to be taken into account. Eq. (2A) is thus simplified as follows:
\[F = A \left\{ -1 + (-1)^l + 2 \sum_{P=0}^{Q/2} \left[\cos 2\pi \frac{P l}{Q} + \cos 2\pi \left(\frac{h}{3} - \frac{3P+1}{3Q} l \right) + \cos 2\pi \left(\frac{h}{3} + \frac{3P+2}{3Q} l \right) \right] \right\} \] (A1)

where the -1 is due to the fact that \(P = 0 \) has been included also in the first cosine term (whose value is 2). Further simplification is obtained by considering the possible relations between \(l \) and \(Q \).

a. For \(l \neq 0 \) (mod \(Q \)), Eq. (A1) can be simplified by means of well-known trigonometric transformation formulae.

\[
\sum_{P=0}^{Q/2} \cos 2\pi \frac{P l}{Q} = \frac{\sin \frac{Q}{2} \cdot \frac{\pi l}{Q}}{\sin \frac{\pi l}{Q}} \cos \frac{Q-2}{2} \cdot \frac{\pi}{Q} = \sin \frac{\pi l}{2} \cos \frac{\pi l}{2} \frac{\cos \frac{\pi l}{Q}}{\sin \frac{\pi l}{Q}} + \sin^2 \frac{\pi l}{2} = \sin^2 \frac{\pi l}{2}
\]

\[
\sum_{P=0}^{Q/2} \sin 2\pi \frac{P l}{Q} = \frac{\sin \frac{Q}{2} \cdot \frac{\pi l}{Q}}{\sin \frac{\pi l}{Q}} \sin \frac{Q-2}{2} \cdot \frac{\pi}{Q} = \sin^2 \frac{\pi l}{2} \frac{\cos \frac{\pi l}{2}}{\sin \frac{\pi l}{Q}} - \sin \frac{\pi l}{2} \cos \frac{\pi l}{2} = \sin^2 \frac{\pi l}{2} \frac{\cos \frac{\pi l}{Q}}{\sin \frac{\pi l}{Q}}
\]

\[
\sum_{P=0}^{Q/2} \left[\cos 2\pi \left(\frac{h}{3} - \frac{3P+1}{3Q} l \right) + \cos 2\pi \left(\frac{h}{3} + \frac{3P+2}{3Q} l \right) \right] = \sum_{P=0}^{Q/2} \left[2 \cos 2\pi \left(\frac{2h}{3} + \frac{l}{3Q} \right) \cos \pi \left(\frac{2P+1}{3Q} \right) \right] = 2 \cos 2\pi \left(\frac{2h}{3} + \frac{l}{3Q} \right) \sum_{P=0}^{Q/2} \cos 2\pi \frac{P l}{Q} - \sin \pi \frac{l}{Q} \sum_{P=0}^{Q/2} \sin 2\pi \frac{P l}{Q} = \left(\frac{2h}{3} + \frac{l}{3Q} \right) \cdot 0 = 0
\]

\[F = A \left\{ -1 + (-1)^l + 2\sin^2 \frac{\pi l}{2} \right\}
\]

and thus:

\[l = 2n: \ F = A(-1 + 1 + 0) = 0 \]

\[l = 2n-1: \ F = A(-1 - 1 + 2) = 0 \]

b. \(l = Q \) (mod \(3Q \)).

\[F = 2A \sum_{P=0}^{Q/2} \left[\cos 2\pi P + \cos 2\pi \left(\frac{h}{3} - \frac{3P+1}{3} l \right) + \cos 2\pi \left(\frac{h}{3} + \frac{3P+2}{3} l \right) \right] = \]

\[= 2A \left[1 + \cos 2\pi \left(\frac{h-1}{3} \right) + \cos 2\pi \left(\frac{h+1}{3} \right) \right] \sum_{P=0}^{Q/2} \cos 2\pi P = 2A \left\{ \left[1 - 2 \cos 2\pi \frac{2h+1}{3} \right] \right\} \frac{Q}{2}
\]

so that:

\[h = 1 \) (mod 3): \ F = N'A \]

\[h = 2 \) (mod 3): \ F = 0 \]

\[h = 0 \) (mod 3): \ F = 0 \]
c. \(l = 2Q \pmod{3Q} \).

\[
F = 2A \sum_{P=0}^{Q-2} \left[\cos 4\pi P + \cos 2\pi \left(\frac{h}{3} - \frac{6P+2}{3} \right) + \cos 2\pi \left(\frac{h}{3} + \frac{6P+4}{3} \right) \right] = \\
2A \left[1 + \cos 2\pi \left(\frac{h-2}{3} \right) + \cos 2\pi \left(\frac{h+4}{3} \right) \right] \sum_{P=0}^{Q-2} \cos 2\pi P = 2A \left\{ \left[1 + 2\cos \pi \frac{2h+2}{3} \right] \frac{Q}{2} \right\}
\]

so that:

- \(h = 1 \pmod{3} \): \(F = 0 \)
- \(h = 2 \pmod{3} \): \(F = N'A \)
- \(h = 0 \pmod{3} \): \(F = 0 \)

d. \(l = 0 \pmod{3Q} \).

\[
F = 2A \sum_{P=0}^{Q-2} \left[\cos 6\pi P + \cos 2\pi \left(\frac{h}{3} - 3P+1 \right) + \cos 2\pi \left(\frac{h}{3} + 3P+2 \right) \right] = \\
2A \left[1 + \cos 2\pi \left(\frac{h-1}{3} \right) + \cos 2\pi \left(\frac{h+2}{3} \right) \right] \sum_{P=0}^{Q-2} \cos 2\pi P = 2A \left\{ \left[1 + 2\cos \pi \frac{2h}{3} \right] \frac{Q}{2} \right\}
\]

so that:

- \(h = 1 \pmod{3} \): \(F = 0 \)
- \(h = 2 \pmod{3} \): \(F = 0 \)
- \(h = 0 \pmod{3} \): \(F = N'A \)

The complete result is:

\[
l_{c_1} \neq 0 \pmod{N'}: F = 0 \\
l_{c_1} = (N'/3)h \pmod{N'}: F = N'A
\]

(A2)

2. \(Q = 2M-1 \). With respect to the \(Q = 2M \) case, the following differences exist:

a) the \((-1)^l\) does not appear;

b) there is one \(u_x(m) = 1 \) term less than those with \(u_x(m) = 0 \) and \(u_x(m) = -1 \)

Eq. (A1) is thus simplified as follows:

\[
F = A \left\{ -1 + 2\sum_{P=0}^{Q-1} \cos 2\pi \frac{P}{Q} + \sum_{P=0}^{Q-1} \cos 2\pi \left(\frac{h}{3} - \frac{3P+1}{3Q} \right) + \sum_{P=0}^{Q-3} \cos 2\pi \left(\frac{h}{3} + \frac{3P+2}{3Q} \right) \right\}
\]

(A3)

Proceeding as shown in the previous case, Eq. (A2) is obtained again.

A. 1. 2 All-even layers.

The only difference with respect to the all-odd case is the +/- sign exchange in the two terms containing \(h/3 \) in Eq. (A1) and (A3). The result is thus:

\[
l_{c_1} \neq 0 \pmod{N'}: F = 0
\]
A. 1. 3 Results.

From Eq. (A2) and (A4) it follows that:

1) an N-layer polytype belonging to subfamily A shows one reflection out of N in all the reciprocal lattice rows parallel to c* corresponding to family reflections;

2) in the space-fixed reference, for all-odd layers polytypes the reflection condition is $l_{C1} = (N'/3)h$ (mod N'), while for all-even layers polytypes it is $l_{C1} = 2(N'/3)h$ (mod N');

3) the diffraction pattern has to be rotated by 180° around the normal to the layer in order to match the family reflections for polytypes built by layers with opposite parity. This corresponds to the fact that the rhombohedral cell of the superposition structure is in the obverse setting for odd parity of the layers, but in the reverse setting for even parity of the layers, as can be seen from Fig. 3 in Durovič et al. (1984).

A. 2 Subfamily B.

The u_4 component, being a sum of an even number of alternating -1 and 1, is always zero [see Table 3 and Eq. (7)]: subfamily B polytypes can thus be orthogonal ($N'=N$) or Class b polytypes ($N'=3N$), but they cannot belong to Class a. In Eq. (2B) the first term is 1, the $(N'/2)$-th one is $(-1)^l$; the remaining ones form pairs $u_x(m)$ and $u_x(N'-m) = -u_x(m)$. Dividing polytypes for which $N'=4M$ and those for which $N'=4M+2$, Eq. (2B) can be re-written as follows.

For $N'=4M$

$$F = A \left[1 + (-1)^l + \sum_{m=1}^{M-1} \left[\exp 2\pi i \left(\frac{ml}{2M} \right) + \exp 2\pi i \left(-\frac{ml}{2M} \right) \right] \right] +$$

$$A' \left[\sum_{m=1}^{M} \left[\exp 2\pi i \left(-\frac{2m'-1}{2M} l \right) + \exp 2\pi i \left(-\frac{2m'-1}{2M} l \right) \right] \right] =$$

$$A \left[1 + (-1)^l + 2 \sum_{m=1}^{M-1} \left(\cos \frac{m}{2M} \pi l \right) \right] + A' \left[2 \sum_{m=1}^{M} \left(\cos \frac{2m'-1}{2M} \pi l \right) \right] = AK_{4M} + A'K'_{4M}$$

For $N'=4M+2$

$$F = A \left[1 + \sum_{m=1}^{M} \left[\exp 2\pi i \left(\frac{ml}{2M+1} \right) + \exp 2\pi i \left(-\frac{ml}{2M+1} \right) \right] \right] +$$

$$A' \left[(-1)^l + \sum_{m=1}^{M} \left[\exp 2\pi i \left(\frac{2m'-1}{4M+2} l \right) + \exp 2\pi i \left(-\frac{2m'-1}{4M+2} l \right) \right] \right] =$$

$$A \left[1 + 2 \sum_{m=1}^{M} \left(\cos \frac{2m}{2M+1} \pi l \right) \right] + A' \left[(-1)^l + 2 \sum_{m=1}^{M} \left(\cos \frac{2m'-1}{2M+1} \pi l \right) \right] = AK_{4M+2} + A'K'_{4M+2}$$

When $l = 0$ (mod N') all the terms under summation go to 1, so that $K_{4M} = K'_{4M} = 2M = N'/2$, $K_{4M+2} = K'_{4M+2} = 2M+1 = N'/2$. When $l = (N'/2)$ (mod N') all the terms under summation in the expression of K_{4M} and K_{4M+2} again go to 1, so that $K_{4M} = 2M = N'/2$, $K_{4M+2} = 2M+1 = N'/2$. When
Analysis of family reflections of OD mica polytypes, and its application to twin identification

\(N' / 2 \). However, in the expression of \(K_{4M}^{'} \) and \(K_{4M+2}^{'} \) all the terms under summation go to -1 and thus \(K_{4M}^{'} - 2M = -N' / 2 \), \(K_{4M+2}^{'} - 2(2M+1) = -N' / 2 \).

When \(l \neq 0 \) (mod \(N' / 2 \)) the following simplified expressions are easily obtained:

\[
K_{4M}^{'} = 1 + (-1)^l \sum_{m=1}^{M-1} \cos \left(\frac{m\pi l}{M} \right) = 1 + (-1)^l + 2 \frac{\sin \frac{\pi l}{2}}{\sin \frac{\pi l}{2M}} \cos \left(\frac{M-1}{M} \frac{\pi l}{2} \right) = 0
\]

\[
K_{4M+2}^{'} = 1 + (-1)^l \sum_{m=1}^{M} \cos \left(\frac{2M+1}{2M} \frac{\pi l}{M} \right) = 0
\]

\[
K_{4M+2}^{'} = 1 + \frac{\sin (M+1) \frac{\pi l}{M}}{\sin \frac{\pi l}{2M+1}} \cos \left(\frac{M+1}{2M+1} \frac{\pi l}{M} \right) = 0
\]

\[
K_{4M+2}^{'} = 1 + \frac{\sin \left(2M+1 \frac{\pi l}{M} \right)}{\sin \frac{\pi l}{2M+1}} \cos \left(\frac{M+1}{2M+1} \frac{\pi l}{M} \right)
\]

(The trigonometric term in the expression of \(K_{4M+2}^{'} \) is always 0.5).

Finally:

\[
(\text{A5})
\]

and the reflection conditions are:

\[
(\text{A6})
\]

Acknowledgments—This research has been partly developed during a Doctoral Program supported by the Japanese Ministry of Education, Science and Culture, and the results were partly obtained when the author was guest of the Russian Academy of Sciences in Moscow (June 1997). The author expresses his deep gratitude to Prof. Boris B. Zvyagin (IGEM, RAS, Moscow) and to Prof. Slavomír Ďurovič (Slovak Academy of Sciences, Bratislava) for many valuable discussions. Special thanks to Prof. Giovanni Ferraris (University of Torino) for critical reading of a previous version of the manuscript. Two anonymous referees gave several important suggestions and comments, which allowed the author to improve the clearness of the manuscript and to make more consistent the treatment.
author is indebted to Prof. Hiroshi Takeda (Chiba Institute of Technology), Prof. Yoshio Takéuchi (Nihon University, Tokyo), Prof. Ryoichi Sadanaga (Japan Academy), Dr. T. Kogure (University of Tokyo), and Prof. Stefano Merlino (University of Pisa) for discussions; Prof. Dmitry Yu. Pushcharovsky (Moscow State University) for sending consultation material; Prof. Masamichi Miyamoto (University of Tokyo) and Prof. Yasunari Watanabe (Teikyo Heisei University) for constant encouragement.

References.

Analysis of family reflections of OD mica polytypes, and its application to twin identification

sity press, 81–118.

Analysis of family reflections of OD mica polytypes, and its application to twin identification

1 (1971) 74-87 (Proc. IMA-IAGOD Meetings '70, IMA Vol.).

Received February 12, 1998; accepted April 26, 1999