Criterion toward understanding non-constant solutions to p-Laplace Neumann boundary value problem

Kanako Suzuki*

Abstract
We consider a p-Laplace equation $\Delta_p V + h(V) = 0$, with an arbitrary C^1-nonlinearity h, in a bounded domain and supplemented with the Neumann boundary condition. We prove a necessary condition for zeros of $h = h(V)$ to be touched by non-constant solutions to this problem.

1. Introduction

In this note, we present an elementary proof of a certain property of constant solutions to the following Neumann boundary value problem for the general nonlinear p-Laplace equation

$$\Delta_p V + h(V) = 0 \quad \text{in } \Omega, \quad (1.1)$$

$$\frac{\partial V}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \quad (1.2)$$

where $\Omega \subset \mathbb{R}^n$ with $n \geq 1$ is a bounded domain with smooth boundary $\partial \Omega$, and ν denotes the unit outer normal vector to $\partial \Omega$. Here, we consider an arbitrary function $h \in C^1(\mathbb{R})$. Δ_p is the p-Laplace operator defined by

$$\Delta_p V = \text{div} \left(|\nabla V|^{p-2} \nabla V \right) \quad \text{for } V \in W^{1,p}(\Omega) \quad (1.3)$$

with $p \in (1, \infty)$.

We note that the equation (1.1) is the Euler-Lagrange equation for the variational integral

$$J_p(v) = \frac{1}{p} \int_{\Omega} \{ |\nabla v|^p - H(v) \} \, dx, \quad H(v) = \int_0^v h(s) \, ds.$$

Hence, $V \in W^{1,p}(\Omega)$ is a weak solution of the equation (1.1) if

$$\int_{\Omega} \left(|\nabla V|^{p-2} \nabla V \cdot \nabla \eta \right) \, dx = \int_{\Omega} h(V) \eta \, dx \quad (1.4)$$

Received 19 December 2019
2000 Mathematics Subject Classification. 35J57; 35J60; 35B45
Key Words and Phrases. p-Laplace Neumann problem; maximum principle; a priori estimates.

*Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, 310-8512, Japan (kanako.suzuki.sci2@vc.ibaraki.ac.jp)
is satisfied for all $\eta \in C^1_0(\Omega) = \{\eta \in C^1(\Omega) \mid \eta = 0 \text{ on } \partial \Omega\}$. If $V \in C^1(\Omega)$ satisfies (1.1) in the distribution sense, then it is called a classical solution.

For the case $h \equiv 0$ in (1.1), weak solutions of (1.1) become members of $C^1_{\text{loc}}(\Omega)$, which is the set of all locally Hölder continuous functions with exponent $\alpha = \alpha(n,p)$. Moreover, there are stronger regularity results, that is, the gradient is locally Hölder continuous, see [26, 2, 3, 25, 13, 24].

Concerning the boundary value problem for a p-Laplace equation, there are many existence results of solutions for the problem with homogeneous Dirichlet boundary condition, see for example [12, 11, 10, 21, 23, 22]. For the problem with Neumann boundary condition, there are a few systematic studies and we can find some results in series of papers [4, 5, 6, 7, 8, 9]. In [9], the existence of a positive solution $V \in C^1(\Omega)$ of (1.1) has been obtained if the nonlinear term h satisfies the following hypotheses (A$_i$)-(A$_{iii}$):

(A$_i$) there exists $c > 0$ such that
$$h(\xi) \leq c(1 + \xi^{p-1}), \quad \text{for all } \xi \geq 0;$$

(A$_{ii}$) the function $\xi \mapsto \frac{h(\xi)}{\xi^{p-1}}$ is strictly decreasing on $(0, \infty)$;

(A$_{iii}$) $\lim_{\xi \to +\infty} \frac{h(\xi)}{\xi^{p-1}} < 0 < \lim_{\xi \to +0} \frac{h(\xi)}{\xi^{p-1}}$.

We note that 0 in (A$_{iii}$) is the first eigenvalue of the nonlinear eigenvalue problem:
$$-\Delta_p V(x) = \lambda |V(x)|^{p-2}V(x) \quad \text{in } \Omega, \quad \frac{\partial V}{\partial \nu} = 0 \quad \text{on } \partial \Omega.$$

The main motivation for this work comes from the following observation. The problem (1.1), particularly in the case $p = 2$, arises in an analysis of models from biology, physics, and other different fields of sciences. If $V \in C^2(\Omega) \cap C^1(\overline{\Omega})$ is a solution of problem (1.1) with $p = 2$, then integrating the equation and using the boundary condition, we obtain $\int_{\Omega} h(V(x)) \, dx = 0$. Hence, there exists $x_0 \in \Omega$ such that $h(V(x_0)) = 0$. In other words, the number $a_0 = V(x_0)$ is a constant solution of problem (1.1). In such a case, we shall say that the non-constant solution $V = V(x)$ touches the constant solution $\overline{V} \equiv a_0$. Hence, the property described above says that each non-constant solution of problem (1.1) with $p = 2$ has to touch at least one constant solution. We would like to consider that the same property holds true or not for classical solutions of the problem (1.1) with $p \in (1, \infty)$.

In this work, we present a necessary condition for certain constant solutions of problem (1.1) to be touched by a non-constant classical solution $V \in C^1(\overline{\Omega})$. As a consequence, we obtain a simple method which leads to a priori estimates of solutions to problem (1.1).

2. Results and examples

We begin by formulating our standing assumptions:
Non-constant solutions to \(p \)-Laplace Neumann problem

1. \(\Omega \) satisfies an interior sphere condition, that is, for any \(y \in \partial \Omega \), there exists a ball \(B \subset \Omega \) with \(y \in \partial B \);
2. the function \(h \in C^1(\mathbb{R}) \) is arbitrary such that (1.1) has a classical solution in \(C^1(\overline{\Omega}) \);
3. we consider non-constant classical solutions \(V \in C^1(\Omega) \).

In the following, we say that \(a \in \mathbb{R} \) is a non-degenerate zero of \(h \) if \(h(a) = 0 \) and \(h'(a) \neq 0 \).

First, we state our main theorem.

Theorem 1. Let \(V \in C^1(\overline{\Omega}) \) be a non-constant classical solution of problem (1.1). Denote by \(a_0 \in \mathbb{R} \) a zero of \(h \) which is the biggest one touched by \(V \), and assume that \(a_0 \) is non-degenerate.

(i) If \(\max_{x \in \overline{\Omega}} V(x) > a_0 \), then \(h'(a_0) > 0 \);

(ii) If \(\max_{x \in \overline{\Omega}} V(x) = a_0 \), then \(h'(a_0) > 0 \) provided that \(1 < p \leq 2 \).

We postpone a proof of Theorem 1 to the next section. For the case of \(p > 2 \) and \(\max_{x \in \overline{\Omega}} V(x) = a_0 \), which is a remaining case of (ii) in Theorem 1, we show the existence of solutions satisfying that \(V(x_0) = a_0 \) for \(x_0 \in \overline{\Omega} \) and \(h'(a_0) < 0 \) in Section 5.

In the following corollary, we consider solutions of (1.1) which touch more than one zero of the function \(h \).

Corollary 2. Let \(b \in \mathbb{R} \) be a zero of \(h \) which is the smallest one touched by \(V \in C^1(\overline{\Omega}) \). Assume that \(b \) is non-degenerate zero. Then we obtain \(h'(b) > 0 \) under each assumption of (i) and (ii) in Theorem 1.

Proof. Here, it suffices to apply Theorem 1 with the function \(\tilde{V}(x) = -V(x) \) which is a solution of equation

\[
\Delta_p \tilde{V} + \tilde{h}(\tilde{V}) = 0,
\]

where \(\tilde{h}(s) = -h(s) \). In this case, the number \(\tilde{b} = -b \) is the biggest zero of \(\tilde{h} \) which is touched by \(\tilde{V} \). Moreover, \(\frac{d}{ds} \tilde{h} \big|_{s=\tilde{b}} = \frac{d}{ds} h \big|_{s=b} \).

We conclude this section with examples which illustrate the theorem and the corollary stated above.

Example 3. We consider the boundary value problem

\[
\varepsilon^2 \Delta_p V - V + |V|^{q-1}V = 0 \quad \text{in } \Omega, \\
\frac{\partial V}{\partial \nu} = 0 \quad \text{on } \partial \Omega,
\]

with \(\varepsilon > 0 \) and \(q > 1 \). The problem (2.1) with \(p = 2 \) was considered e.g. in a series of papers [20, 14, 17, 18]. When \(p = 2 \) and \(1 < q < \frac{n+2}{n-2} \) for \(n \geq 3 \), and \(p = 2 \) and
1 < q < ∞ for n = 1, 2, it was shown by using the variational method that problem (2.1) has a positive solution $u_ε$, so called a least-energy solution, for sufficiently small $ε > 0$. Moreover, it was proved that this least energy solution has its only maximum point located on $∂Ω$. We refer the reader to [16] for more comments and references on this problem with $p = 2$. For $1 < p < 2$, the nonlinear term $h(V) = -V + |V|^{q-1}V$ satisfies the hypotheses (A$_i$)-(A$_{iii}$) with $0 < q < p - 1$. Then, the problem (2.1) has a positive classical solution $V \in C^1(\overline{Ω})$. Assume that there exists a non-constant solution $V \in C^1(\overline{Ω})$, which is not necessarily positive. Here, the functions $h(V) = -V + |V|^{q-1}V$ has three non-degenerate zeros $V(x) \in \{-1, 0, 1\}$. It is clear from Theorem 1 and Corollary 2 that the solution has to touch either 1 or -1, because $h'(±1) = -1 + p > 0$. Since $h'(0) = -1$, if $V(x)$ touches 0, then it has to touch both numbers -1 and 1. If $V(x)$ is a positive non-constant solution of (2.1), then $\max_{x \in \overline{Ω}} V(x) > 1$.

Example 4. Next, we consider a p-Laplace equation with a bistable nonlinearity

$$ ε^2 \Delta_p V + V(1 - |V|^{q-1}) = 0 \quad \text{in } Ω, $$

$$ \frac{∂V}{∂ν} = 0 \quad \text{on } ∂Ω, $$

where $ε > 0$ and $q > 1$. If $p = 2$ and $q = 3$, this is the boundary value problem for the Allen-Cahn equation, for which questions on the existence of non-constant solutions has been answered in [1, 15] and in references therein.

Let $p \in [2, ∞)$. Then, the nonlinear term $h(V) = V(1 - |V|^{q-1})$ satisfies the hypotheses (A$_i$)-(A$_{iii}$). In this case, the problem (2.2) has a positive classical solution $V \in C^1(\overline{Ω})$. On the other hand, at the roots of the function $h(V) = 0$, we have

$$ h'(-1) < 0, \quad h'(0) > 0, \quad h'(1) < 0. $$

Thus, every non-constant solution $V \in C^1(\overline{Ω})$ of problem (2.2) for any $p \in (1, ∞)$ has to satisfy

$$ -1 \leq V(x) \leq 1 \quad \text{for all } x \in \overline{Ω} \quad \text{and} \quad V(x_0) = 0 \quad \text{for some } x_0 \in \overline{Ω}. $$

Therefore, if there exists a positive solution, then it should be a constant solution $V(x) \equiv 1$.

3. Preliminaries

It is sometimes useful to consider weak supersolutions and weak subsolutions of a p-Laplace equation.

Definition 5. We say $u \in W^{1,p}_{loc}(Ω)$ is a weak supersolution of a p-Laplace equation if u satisfies

$$ \int_{Ω} |\nabla u|^{p-2}\nabla u \cdot \nabla η dx \geq 0 $$

(3.1)
Non-constant solutions to p-Laplace Neumann problem

for all $\eta \in C_0^1(\Omega)$ with $\eta \geq 0$. If u satisfies the reversed inequality of (3.1), that is,

$$
\int_\Omega |\nabla u|^{p-2}\nabla u \cdot \nabla \eta \, dx \leq 0,
$$

(3.2)

then it is called a weak subsolution.

If we write

$$
\text{div}(|\nabla u|^{p-2}\nabla u) \leq 0,
$$

then we promise that it denotes the inequality (3.1). For the reversed inequality above, it corresponds to (3.2).

We prepare some notations. The positive and negative parts of a function are defined by

$$
f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \max\{-f(x), 0\}.
$$

It is clear that $f = f^+ - f^-$ and $|f| = f^+ + f^-$. For $x_0 \in \mathbb{R}^n$ and $r > 0$, $B_r(x_0)$ denotes a ball defined by

$$
B_r(x_0) = \{x \in \mathbb{R}^n \mid |x - x_0| < r\}.
$$

If $x_0 = 0$, then we simply write B_r.

Next, we introduce the maximum principle, the Hopf boundary lemma and the Harnack inequality for solutions of an elliptic equation in divergence form.

We consider the inequality

$$
\text{div}(|\nabla u|^{p-2}\nabla u) + G(x, u, \nabla u) \leq 0 \quad \text{in} \ \Omega,
$$

(3.3)

where $G(x, z, \xi) \in L^\infty(\Omega \times \mathbb{R}^+ \times \mathbb{R})$ satisfies, for $\kappa > 0$, that

$$
G(x, z, \xi) \geq -\kappa|\xi|^{p-1} - f(z)
$$

(3.4)

for $x \in \Omega$, $z \geq 0$ and all $\xi \in \mathbb{R}^n$ with $|\xi| \leq 1$. The function f is in $C(\mathbb{R}^+ \cup \{0\})$ and assumed to satisfy

$$
f(0) = 0, \quad \text{and} \quad f \text{ is non-decreasing on some interval } (0, \delta), \delta > 0.
$$

(3.5)

We define functions F and G by

$$
F(s) = \int_0^s f(u) \, du,
$$

and

$$
\Phi(s) = \frac{p-1}{p} s^p.
$$

Theorem 6 (Theorem 5.3.1 in [19]). Let (3.4) and (3.5) be satisfied. If $u \in C^1(\Omega)$ with $u \geq 0$ in Ω satisfies (3.3) and $u(x_0) = 0$ for some $x_0 \in \Omega$, then $u \equiv 0$ provided that either $f \equiv 0$ in $[0, d]$ with $d > 0$ or the following holds:

$$
\lim_{\varepsilon \to +0} \int_{\varepsilon}^{\delta} \frac{ds}{\Phi^{-1}(F(s))} = \infty.
$$

(3.6)
\textbf{Theorem 7} (Theorem 5.5.1 in [19]). \textit{Let (3.4) and (3.5) be satisfied, and assume that either }f \equiv 0 \text{ in } [0, d] \text{ with } d > 0 \text{ or (3.6) is satisfied. If } u \in C^1(\overline{\Omega}) \text{ satisfies (3.3) with } u > 0 \text{ in } \Omega \text{ and } u(y) = 0 \text{ for some } y \in \partial \Omega, \text{ then}
\frac{\partial u}{\partial \nu}(y) < 0. (3.7)

4. Proof of Theorem 1

In this section, we denote by \(x_0 \in \overline{\Omega} \) a point such that \(\Omega \) such that \(\Omega \) and \(7 \) that

\[\text{Since } U \text{ does not touch any zeros bigger than } a \]

are continuous, there exists \(a \) such that \(a < 0 \). In the following, we let \(U(x) = a_M - V(x) \). Then, we see that \(U \) is a weak solution of the problem

\[\Delta_p U + k(U) = 0 \text{ in } \Omega, \quad \frac{\partial U}{\partial \nu} = 0 \text{ on } \partial \Omega, \] (4.1)

where \(k(U) = -h(a_M - U) \). Moreover, we have that \(U(x) \geq 0 \) for \(x \in \overline{\Omega} \) and \(U(x_M) = 0 \).

The proof of Theorem 1 is based on Theorems 6 and 7. We discuss the cases \(a_0 < a_M \) and \(a_0 = a_M \), separately. In the following, we suppose \(h'(a_0) < 0 \) and show this hypothesis leads to a contradiction.

\textbf{Case I: } \(a_0 < a_M \)

First, we assume that \(x_M \in \Omega \). If \(h(V(x_M)) \geq 0 \), then there exists a \(x_1 \in \overline{\Omega} \) such that \(a_1 = V(x_1) > a_0 \) and \(h(a_1) = 0 \). This is a contradiction because \(V(x) \) does not touch any zeros bigger than \(a_0 \). Thus, we have \(h(V(x_M)) < 0 \). Since \(V \) and \(h \) are continuous, there exists \(r > 0 \) such that \(h(V(x)) < 0 \) for all \(x \in B_r(x_M) \) where

\[B_r(x_M) = \{ x \in \Omega \mid |x - x_M| < r \} \subset \Omega. \]

Since \(k(U(x)) > 0 \) for all \(x \in B_r(x_M) \) in (4.1), it is easily to see that \(U \) becomes a weak supersolution of a \(p \)-Laplace equation in \(B_r(x_M) \), that is, \(U \) satisfies

\[\int_{B_r(x_M)} |\nabla U|^{p-2} \nabla U \cdot \nabla \eta \, dx = \int_{B_r(x_M)} k(U) \eta \, dx \geq 0 \]

for all \(\eta \in C_0^1(B_r(x_M)) \) with \(\eta \geq 0 \). Since \(U(x_M) = 0 \), we use Theorem 6 with \(G \equiv 0 \) to obtain that \(U \equiv 0 \) in \(B_r(x_M) \). By the standard argument, we see that \(U \equiv 0 \) in \(\Omega \). This is a contradiction.

Next, we assume that \(x_M \in \partial \Omega \). From the assumption, there exists a ball \(B_r \subset \Omega \) with \(x_M \in \partial B_r \) such that

\[U(x) > U(x_M) = 0 \quad \text{for } x \in B_r. \]

Since \(U \) is a weak supersolution of a \(p \)-Laplace equation in \(B_r \), it follows from Theorem 7 that

\[\frac{\partial U}{\partial \nu}(x_M) < 0. \]
This is a contradiction because U satisfies a homogeneous Neumann boundary condition.

Case II: $a_0 = a_M$

Let $1 < p \leq 2$. For the function k in (4.1), we have that

$$k(0) = 0 \quad \text{and} \quad k'(0) < 0. \quad (4.2)$$

We assume that $x_0 \in \Omega$. By the continuity of $k(U(x))$ and by (4.2), there exists an open neighborhood $B \subset \Omega$ of x_0 such that

$$k'(U(x)) \leq 0 \quad \text{for all} \quad x \in B.$$

Now, we use the well-known formula to obtain that

$$k(U(x)) = k(U(x)) - k(0) = \int_0^1 \frac{d}{ds} k(sU(x)) \, ds = U(x) \cdot \int_0^1 k'(sU(x)) \, ds \quad (4.3)$$

and this implies that

$$c(x) \equiv \int_0^1 k'(sU(x)) \, ds \leq 0 \quad \text{for all} \quad x \in B. \quad (4.4)$$

Thus, U satisfies that

$$\text{div} \left(|\nabla U|^{p-2} \nabla U \right) + c(x)U = 0. \quad (4.5)$$

Since there exists $\delta > 0$ such that $-\delta < c(x) \leq 0$ because $U \in C^1(\overline{\Omega})$ and $k \in C^1(\mathbb{R})$ from the assumption, the condition (3.4) holds. Hence, we can apply Theorem 6 to (4.5) and obtain that $U \equiv 0$ provided that (3.6) is satisfied. Here, we see, for $1 < p \leq 2$, that (3.6) is

$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\delta} s^{-2/p} \, ds = \infty. \quad (4.6)$$

This derives a contradiction.

Next, we assume that $x_0 \in \partial \Omega$. As before, we find a ball $B \subseteq \Omega$ such that $x_0 \in \partial B$ and

$$k'(U(x)) < 0 \quad \text{for all} \quad x \in B.$$

Hence, again using (4.4), we have that U is a solution of (4.5) in B with $-\delta < c(x) \leq 0$.

Now, we apply Theorem 7 to the equation (4.5). Since (4.6) is satisfied, it follows from Theorem 7 that, for a non-constant solution U of (4.5) satisfying $U(x) > U(x_0) = 0$ in B, we have

$$\frac{\partial U(x_0)}{\partial \nu} < 0.$$

Therefore, we get a contradiction.
5. Monotone solutions for bistable nonlinear case

We consider the following problem which is the problem (2.2) in one-dimensional case:

\[
\begin{aligned}
\varepsilon^2 (|V'|^{p-2}V')' + V (1 - |V|^q) &= 0, \quad x \in (-1, 1) \\
V'(-1) &= V'(1) = 0,
\end{aligned}
\]

(5.1)

where \(p > 2 \) and \(q \geq 2 \). Let \(h(V) = V (1 - |V|^q) \). Then, we have already seen in Example 4 that the roots of \(h(V) = 0 \) are \(-1, 0, 1\) and it is satisfied

\[
\begin{aligned}
h'(-1) < 0, \quad h'(0) > 0, \quad h'(1) < 0.
\end{aligned}
\]

From Theorem 1, a non-constant classical solution of (5.1) with \(p \geq 2 \) cannot touch \(-1\) and \(1\). However, for the case \(p > 2 \), the problem (5.1) can have a solution \(V(x) \) satisfying \(V(x_0) = 1 \) for some \(x_0 \in [-1, 1] \). In order to prove the existence of such solutions, we will construct a solution of the problem (5.1) satisfying

\[
-1 < V(x) < 1 \quad \text{for} \quad x \in (-1, 1), \quad \text{and} \quad V(-1) = -1, \quad V(1) = 1,
\]

which attains 1 and \(-1\) at the boundary points of the domain.

In the following, we use some ideas from [23] which treats Dirichlet boundary problems.

Letting \(\psi = |w'|^{p-2}w' \), we consider the following problem:

\[
\begin{aligned}
\varepsilon \psi' + h(w) &= 0, \quad x \in (0, \infty), \\
w(0) &= 0, \quad \psi(0) = \alpha.
\end{aligned}
\]

(5.2)

(5.3)

Here \(\alpha \) is a parameter. We will find a solution satisfying \(w(1) = 1 \) and \(\psi(1) = 0 \) for some \(\alpha \).

Integrating both sides of (5.2) with respect to \(x \) after multiplying them by \(w' \), we obtain that

\[
\varepsilon \frac{p-1}{p} \int_0^x (|\psi|^{p/(p-1)})' dx + \int_0^w h(s) ds = 0,
\]

where we have used \(w' = \psi|\psi|^{-(p-2)/(p-1)} \). Therefore, noting (5.3), we see that

\[
|\psi|^{p/(p-1)} = |\alpha|^{p/(p-1)} - \frac{p}{\varepsilon(p-1)} H(w), \quad H(w) = \int_0^w h(s) ds.
\]

(5.4)

Since

\[
H(w) = \int_0^w s(1 - |s|^q) ds = \frac{1}{q+2}w^2 \left(\frac{q+2}{2} - |w|^q \right),
\]

it follows from Figure 1 that there exists a \(x^* \in (0, \infty) \) such that we can have a solution of (5.2)–(5.3) with \(w(x^*) = 1 \) and \(\psi(x^*) = 0 \) if and only if \(\alpha = \alpha_\pm \), where

\[
\alpha_\pm = \pm \left(\frac{p}{\varepsilon(p-1)} H(1) \right)^{(p-1)/p} = \pm \left(\frac{pq}{2\varepsilon(p-1)(q+2)} \right)^{(p-1)/p}.
\]

(5.5)
Non-constant solutions to p-Laplace Neumann problem

Figure 1: Graph of $-H(w)$. $E_{\pm} = \pm ((q + 2)/2)^{1/q}$ and $-H(\pm 1) = -q/(2(q + 2))$.

It is remained to show that $x^* = 1$. Now, we consider the case $\alpha_+ > 0$ and $x > 0$ is small. Then, $\psi(x) > 0$. Moreover, we assume $w(x) > 0$. Then, for $0 < \alpha \leq \alpha_+$, there exists b_α such that each solution of (5.2)–(5.3) satisfies $w(x_\alpha) = b_\alpha > 0$ and $\psi'(x_\alpha) = 0$ for some $x_\alpha \in (0, \infty)$. Note that $b_\alpha \to 1$ as $\alpha \to \alpha_+$. Differentiating both sides of (5.4) with respect to x, we obtain that

$$\frac{p}{p - 1} \psi^{1/(p - 1)} \frac{d\psi}{dx} = -\frac{p}{\varepsilon(p - 1)} h(w) \frac{dw}{dx}. $$

Since, using (5.4) again, we have

$$\psi^{1/(p - 1)} = \left(\frac{\alpha^{p/(p - 1)}}{\varepsilon(p - 1)} - \frac{p}{\varepsilon(p - 1)} H(w) \right)^{1/p},$$

the equation (5.2) becomes

$$\frac{dw}{dx} = \left(\frac{\alpha^{p/(p - 1)}}{\varepsilon(p - 1)} - \frac{p}{\varepsilon(p - 1)} H(w) \right)^{1/p}. $$

Here we see that $\alpha^{p/(p - 1)} = \varepsilon(p - 1)/H(b_\alpha)$ from (5.4). Integrating the both sides of (5.6) with respect to x from 0 to x_α, we obtain that

$$x_\alpha = \left(\frac{\varepsilon(p - 1)}{p} \right)^{1/p} \int_0^{b_\alpha} (H(b_\alpha) - H(w))^{-1/p} dw. $$

Since the function $\alpha \mapsto b_\alpha$ is one to one, we define

$$I(a) = \int_0^a (H(a) - H(w))^{-1/p} dw, \quad a \in (0, 1] $$

(5.8)
and show that there exists \(\varepsilon > 0 \) such that

\[
I(1) = \left(\frac{\varepsilon(p - 1)}{p} \right)^{-1/p}.
\]

(5.9)

Letting \(w = au \), we calculate \(I(a) \) and obtain

\[
I(a) = \int_0^1 (H(a) - H(au))^{-1/p} a \, du
\]

\[
= a \int_0^1 \left\{ \int_{au}^a w(1 - w^q) \, dw \right\}^{-1/p} du
\]

\[
= a^{1 - \frac{2}{p}} \int_0^1 \left\{ \int_0^1 (1 - (as)^q) \, ds \right\}^{-1/p} du
\]

\[
= a^{1 - \frac{2}{p}} \int_0^1 \left\{ \frac{q + 2(1 - a^q)}{2(q + 2)} - \frac{u^2}{2} + \frac{a^q}{q + 2}u^{q+2} \right\}^{-1/p} du.
\]

Define the function \(g \) as

\[
g(u, a) = \frac{q + 2(1 - a^q)}{2(q + 2)} - \frac{u^2}{2} + \frac{a^q}{q + 2}u^{q+2}.
\]

Then, it satisfies

\[
g(0, a) \geq \frac{q}{2(q + 2)} > 0 \quad \text{and} \quad g(1, a) = 0 \quad \text{for all} \quad a \in (0, 1].
\]

Moreover, we see

\[
\frac{\partial g}{\partial u}(u, a) = -u(1 - a^q u^q) < 0 \quad \text{for} \quad u \in (0, 1), \ a \in (0, 1],
\]

and

\[
\frac{\partial^2 g}{\partial u^2}(u, a) = -1 + (q + 1)a^q u^q > 0 \quad \text{for} \quad u \in (0, 1),
\]

provided that \(a > 1/(q + 1)^{1/q} \). Since

\[
\lim_{u \to 1^-} \frac{g(u, 1)}{(1 - u)^2} = \frac{q}{2} > 0,
\]

it follows that \(g(u, 1) = O((1 - u)^2) \) as \(u \to 1 \). Therefore, we obtain that there exists \(C > 0 \) such that

\[
g(u, a)^{-1/p} \leq C(1 - u)^{-2/p} \quad \text{for} \quad \left(\frac{1}{q + 1} \right)^{1/q} < a \leq 1
\]

in consideration of concavity and convexity of functions. Hence, it is satisfied that

\[
\lim_{a \to 1^-} I(a) = I(1) = \int_0^1 g(u, 1)^{-1/p} \, du < \infty.
\]
Now, we will show (5.9). The function $m(\varepsilon) = \varepsilon^{-1/p}$ is a continuous and monotone decreasing function of $\varepsilon \in (0, \infty)$ so that $\lim_{\varepsilon \to +0} m(\varepsilon) = \infty$ and $\lim_{\varepsilon \to \infty} m(\varepsilon) = 0$. Therefore, there exists $\varepsilon_0 > 0$ such that

$$I(1) = \left(\frac{\varepsilon_0(p - 1)}{p} \right)^{-1/p}.$$

Consequently, we have obtained a solution of (5.2)–(5.3) satisfying

$$w(0) = 0, \quad \psi(0) = \alpha_+,$$
$$w(1) = 1, \quad \psi(1) = 0. \quad (5.10)$$

If w is the solution of (5.2)–(5.3), then $z(x) = -w(-x)$ is a solution of the problem

$$\begin{cases}
\varepsilon_0 \frac{d\tilde{\psi}}{dx} + h(z) = 0, & x \in (-\infty, 0), \\
z(0) = 0, \quad \tilde{\psi}(0) = \alpha_+, \\
z(-1) = -1, \quad \tilde{\psi}(-1) = 0.
\end{cases} \quad (5.11)$$

Letting

$$V(x) = \begin{cases}
w(x) & x \in [0, 1], \\
z(x) & x \in [-1, 0],
\end{cases}$$

we see that this is a solution of the problem (5.1) with $\varepsilon = \varepsilon_0$ satisfying $V(1) = 1$ and $V(-1) = -1$, which is the desired solution.

5.1. Flatness of solutions at the boundary

We see that there exists a solution of (5.1) which has flat parts around the boundary.

Fix $0 < \xi < 1$ arbitrarily. We consider the existence of a solution of (5.2)–(5.3) satisfying $w(\xi) = 1$ and $\psi(\xi) = 0$. According to the same procedure as that in the previous case, we obtain $\alpha = \alpha_0$ which is given by (5.5). Moreover, the existence of such solution can be shown if there exists $\varepsilon > 0$ such that

$$I(1) = \xi \left(\frac{\varepsilon(p - 1)}{p} \right)^{-1/p},$$

where the function $I(a)$ is defined by (5.8) for $a \in (0, 1]$. It is easily seen that this is satisfied if $\varepsilon = \varepsilon_0 \xi^p$. Hence, we have a solution of (5.2)–(5.3) satisfying

$$w(0) = 0, \quad \psi(0) = \alpha_+, \quad w(\xi) = 1, \quad \psi(\xi) = 0.$$

Letting $z(x) = -w(-x)$, which is defined for $-\xi \leq x \leq 0$, we obtain a solution of (5.1) with $\varepsilon = \varepsilon_0 \xi^p$:

$$V(x) = \begin{cases}
1 & (\xi < x \leq 1), \\
w(x) & (0 < x \leq \xi), \\
z(x) & (-\xi < x \leq 0), \\
-1 & (-1 \leq x \leq -\xi).
\end{cases}$$
This is monotone increasing function on $[-1, 1]$ and the maximum of V is attained not only at the boundary but also at inner parts of the domain $(-1, 1)$.

Acknowledgments

The author would like to thank Professor Toshio Horiuchi for the extremely helpful discussions that helped to advance this paper. She also would like to express her gratitude to Professor Grzegorz Karch for his helpfulness and encouragement. This work is supported by JSPS the Grant-in-Aid for Scientific Research (C) 18K03354 and 19K03557.

References

Non-constant solutions to p-Laplace Neumann problem

