酒類の熟成を科学する

松井 健一*
（受付 2001 年 8 月 21 日）

1. 熟成の意義と解釈

1.1 一般概念としての熟成

熟成は「十分に熟してできあがること」（広辞苑, 第四版）という意味の言葉として一般に使われている。時効、老化 (ageing = aging) の意味ももつ。

ところで、熟成という言葉は大漢和辞典（大修館書店、修訂第二版）には記載されていない。古語辞典にもない。日本国語大辞典（小学館、第二版）では、日本開化小史（1877～82）田中明吉4.6に「我国封建の勢雄が熟成に至りしも…」との記載が初出だとされている。科学大辞典（丸善、1985年）では熟成（ripening, conditioning）を「反応生成物を一定条件下に保持し、化学的変化またはコロイド変化を一定の要求程度まで進行させる操作または現象」と表現している。

食品工学会においては、熟成という概念は広範囲にわたって用いられている。動物体の蛋白質・脂肪・グリコゲンなどは酵素や微生物などの作用を受けやすい。そこで、ある温度のもとで管理して腐敗させることなく適度に分解させ、特殊な香味が得られるようにする。この作業を程を熟成とよんでいる。「なれ」ともいう。この工程は発酵食品の付加価値を向上させる上で極めて重要である。

発酵食品の製造では、中心となる発酵あるいは酵素反応そのものを熟成とよぶ場合がある。味噌、しょうゆ、塩辛、みりん、チーズ、ヨーグルト、ザワクラウト、ピクルスなどの製造はその例である。

これに対し、主となる反応が終わったのに起こる別の発酵や酵素反応を熟成という場合もある。その例にワイン、シェリー、ビールなどがある。

また、微生物や酵素が関与することなく、放置するだけでも色や香味が変わる反応を熟成という場合がある。この例は非常に多く、火入れ後に静置する清酒の熟成、ウィスキー、ブランドー、焼酎、酢、ソースなどの熟成がある。

1.2 酒類の熟成

酒類の香味は、基本的にはそれに含まれる成分に依存している。しかし、醸造酒、蒸留酒ともに、原酒のままでアルコール濃度（以下、単にアルコールと略記する）による刺激臭が強く、一般に購入できる製品とはかなり異なる。

ウィスキー、ブラウンデー、茅台酒などでは、30年熟成したものになると、アルコール濃度が40度、あるいは50度ほどあるにもかかわらず、香味としては驚くほどマイルドで、そんなに強い酒とは思えない。

1.2.1 基本は化学的成分の変化

代表的な酒類の熟成に関する知見の一部を、次に列挙する。

a）清酒における熟成

醸造後に濃度調整された清酒は、火入れを経てから低温に管理されたタンク内で静かに貯蔵される。期間は通常、1～3ヶ月である。

熟成中に起こる化学反応は、複雑多岐にわたる。糖がる素含有化合物と反応して大きなメラノイジンになり、色が濃くなるほか、酸素の作用も考慮しなければならない。アルコールが酸化してアセトアルデヒドに変わる、コハク酸やリンゴ酸がモノエチルエステルになって酸味が減る。
酵母菌体から溶け出したS-アデノシルメチオニンが切断されてS-メチルオアシドンとホモセリンとなる。

この熟成工程では、糖とアミノ酸が増加し、甘口化と旨口化が起こる。

b) ビールの製造では、清酒の熟成に相当する工程を後発酵とよんでいる。すなわち、主発酵を終えた若ビールは低温の貯蔵タンクの中で後発酵に入れる。

この工程では硫化水素、アルデヒド、ジアセチル、アセトン、糖などが減少し、逆にエステルやアルコールが増加する。この結果、熟成した香味があらわれる。その後、1ヶ月以上貯蔵してから出荷される。

c) ウィスキーやブランドーは樽に貯蔵される。樽材からはリグニン、ポリフェノール、糖やアミノ酸などが溶出する。リグニンは熟成中にコニフェリールアルコールになり、さらに酸化されてバニリンに変化する。バニリンは芳香を発する物質である。

d) 赤ワインの場合は、発酵が終了したのちにリゴノ酸が乳酸とCO₂に分解される。熟成中に起こるこの反応は乳酸菌によるもので、マロラクティック発酵とよばれている。

e) 本格焼酎の場合は、蒸留した直後の雰囲気があり、油で白濁している。香味は荒いが、数ヶ月貯蔵すると香味がまるかやかにされる。

1.2.2 化学変化だけでは不可解な事実

清酒やウィスキー、ブランドーはもちろん、ビールでもその中に溶けているわずかなエキス成分とその変化が微妙に香味に影響し、これが酒類を深みものにしている。

甲類焼酎の場合、このエキス成分は、さらに微量である。そのわずかな量であっても、各種の焼酎に固有の香味を出させている。

ところが、酒類を精密に化学分析して、そのデータに基づいて成分を別途合成し、それらを混合しても、元の酒類の香味はまず得られない。

これらのことから、酒類の香味は単に化学成分だけで決まるものではないことが推定される。すなわち、香味はその成分自体が単に存在していればいいというものではなく、その存在状態も重要な因子だと思われる。

本報では水分子とアルコール分子の関わりに焦点を合わせ、その中で酒類の熟成について考察する。

2. 物理化学からみた酒類

2.1 水の液体構造

水分子が同じ場所にとどまる時間は約10⁻¹²秒で、これだけ短時間で反応するシャッターで写せるカメラがあれば、その瞬間においても、ある構造の静止画像が得られるはずである。これは「水の液体構造」とよばれている。

この構造を分子のレベルでみたものが「水のクラスター(cluster)」である。この概念は1962年、NémethyとScheragaにより提唱された。

「水のクラスター」は絶えず破壊されたりしているが、その瞬間をとどめている、条件によってさらに大きくなるといわれている。とくに接する物質の影響を受けやすい。

この構造は約50%が隙間である。水の物理化学ではこの隙間を空孔(cavity)とよんでいる。

水はつねに多くの物質を溶かしている。また、空気中の酸素や窒素、二酸化炭素などが絶えず押し込まれる条件にさらされている。さらに、磁場や電磁波などを受けることもあって、水のクラスターは空孔を含め、絶えず変化するものである。

2.2 アルコール水溶液の液体構造

2.2.1 アルコールは水を収縮する

水100mℓにアルコール50mℓを混合すると、33度の甲類焼酎ができるが、20℃の場合、その体積は146mℓにしかならない。4mℓだけ縮むのみである。

液体の水には上述のような空孔がたくさん存在する。ここには水分子は入り込めないが、水に薫香しない小分子ならば入る可能性がある。

また、硫化水素のエチル基(C₂H₅⁻基)のような部分も空孔に入ることができる。空孔に納まったエチル基部分は、体積増加に寄与しない。これが縮む理由である。図1の左端にはアルコール分子1個を取り囲む水分子の数が5個になっているが、実際は立体的に配置された平均11.5個(後述)である。

2.2.2 収縮量が最大となるアルコール濃度

この収縮の程度は水とアルコールの混合割合により変化する。20℃の場合、最大の体積収縮が起こるその割合は、モル比、すなわちアルコール分子と水分子の数の比で表すと、0.08：0.92≒1：11.5である(図2)。
このような混合割合は、アルコール分子1個に対して水分子約11.5個の割合の「ある準安定状態にある分子集合体」が存在することを示唆している。

この分子集合体を「1:11.5のアルコール-水クラスター」と簡略して「1対11.5構造」とよぶことにする。この混合比は、アルコール濃度で表示すると22度（容量％）となり、醸造における最高濃度と一致する。

この「1対11.5構造」の中でアルコール分子は、どの瞬間ににおいても、それなりに安定した状態になろうとしている。

2.2.3 強い酒中の液体構造

蒸留酒であれば、20度を越える高濃度の酒類がたくさんある。約95％という高濃度の醸造アルコールを水で希釈して造られる甲類焼酎がその例である。

体積変化以外に、もっと高濃度で変化する物理量を探してみよう。第1は、縦軸にアルコールと水が混合するときに発生する発熱量の比をとることである。

この混合比のときに最も多くの熱を外部に放出し、エネルギーレベルが最低になる。すなわち、熟エネルギー的に安定した「アルコール-水クラスター」の集合体が得られる。

その変曲点を示す混合比は、アルコールと水の分子数の比で表すと0.17：0.83＝1:4.88＝1:5となる。これは平均的にみれば「1対5構造」を示唆している。アルコール濃度で表示すると、約40度となる（図3）。

清酒原酒の場合は「1対11.5構造」であった。「1対5構造」はそれより水分子の数が半減している。この濃度に近い酒としてウィスキーやブランデーがあげられる。

第2は、アルコール水溶液におけるアルコール分子の動きやすさ、すなわち、自己拡散係数の変曲点である113。最小値をとるアルコール濃度は約40重量％（約47度）で、モル比では1:3.8≒1:4となる。非常に静かに動き回りにくい準安定の構造が、平均的に「1対4構造」であることを示唆している（図4）。

この濃度はかなり高く、泡盛や茅台酒などがそれに対応している。

なお、各種の「アルコール-水クラスター」については質量分析法により、その存在が推定されている。この方法は、酒類をジェット流にしたときに、各種の分子集合体を質量差から検出するものである117-118。

別の一例として、モルトウィスキー中にアルコール分子16個、水分子13個からなる「アルコール-水クラスター」の存在が確認されている119。

「アルコール-水クラスター」の概念が深化されるにつれて、熟成との関係が深く検討されるようになっている。

3. 物理的エネルギーと熟成

3.1 物理的刺激で熟成された可能性がある例

その昔、獲の酒が数週間で冷かしてあった。その転先にぶら下がった樽の酒は、そのほか皆違ったという「自然樽」の中で酒が凹んで味がまるやかになったと考えられる。現代では、振動という一種の弾性波エネルギーにより「アルコール-水クラスター」の構造が安定化して、酒の熟成が進んだとみることもできる。

打撃などの振動も検討の対象になる。

茅台酒の場合は囊の中で、泡盛では土壌の中で何年か貯蔵される。この熟成により、まるやかになって飲みやすくなる。土壌や土壌から何かが発生しているのであろうか。それがあらかじめあるという見方もある。

遠赤外線は、水の分子運動に関わる波長領域の電磁波であるから、水や水溶波の構造を変化させる可能性がある。
3.2 物理化学的測定からみた熟成
物理学的な測定手段の発達にともない，水の液体構造論を含めて，物理化学的見地から熟成について多く論じられ
ようになった。以下にその例を紹介する。
蒸留酒の誘電率は，貯蔵年数とともに減少する。電場の
周波数が高くなるほど，その減少が大きく，これは水やアル
コールの分子間の相互作用が増大し，電場の変化に追従
しにくくなったことを意味する。このことは，このアル
コール水溶液がより安定した液体構造に移行していること
を意味する。
香気成分が熟成によって蒸発しにくくなる，これはその
成分が水素結合によって単量体から二量体になったために
蒸発しにくくなったと考えられる。
また，蒸留酒の蒸発潜熱は，貯蔵年数が長いほど大きく
なることから，熟成とともにアルコールが蒸発しにくくな
ることがわかる。
なお，十分に熟成した低温の酒は，NMR の測定でそのス
ペクトルがブロードになり，半価幅が増大する。これはア
ルコール分子の熱運動が抑制されたことを表している。た
だし，熟成中に増えた数により NMR スペクトルが逆にシ
ャープになるため，注意を要する。
3.3 そのための作業仮説
製造ならびに熟成の工程において，すでにさまざまな試
みがおこなわれている。しかし，現時点では，実施の条件と
成果が系統的に整理できていないため，追試できない場合
が多い。そこで，つぎの作業仮説を立てた。
①水分とアルコール分子は準安定の液体構造をとる。
②その構造は「1対11.5構造」だけでなく，「1対5構造」，
「1対4構造」もある。
③それらの構造への乗り換えには通常，時間がかかる。
④それを加速するには，その構造に振る舞うをかける物
理的エネルギーが利用できる可能性がある。
3.4 短期熟成の可能性について
熟成が「アルコールと水を中心とした分子の状態の変
化」という「物理化学変化」と仮定すると，新らしい可能性
が期待される。弾性波・電磁波エネルギーの質と量の選び
方によっては，短時間で熟成を起こせる可能性がある。
また，この考え方は，熟成の速度を短縮できる，香味の
向上や酒質の安定化にも及ぶ可能性を秘めている。
このように熟成に関する分子論の解釈は，今後，ますま
す盛んになるであろう。また，この視点は酒類だけでなく，
他の飲料や乳類，さらには調味料や缶詰製品など，広範囲
の食品についても共通していると思われる。
引用文献
1) 佐藤 信：“美酒の設計”，大日本図書（1974），p.97
2) 佐藤 信：“美酒の設計”，大日本図書（1974），p.93
3) 吉澤 潤編：“酒の科学”，朝倉書店（1995），p.52
4) 吉澤 潤，湯目英郎（編集幹事）：“ワイン学”，産業調
査会（1991），p.127
5) 菊間誠之：“焼酎の話”，技術堂出版（1984），p.29
6) 松井健一：“水の不思議（その1）水をふたたび科学す
る”，旭リサーチセンター，ARCリポート（1993），p.11
3382 (1962)
8) L. Brügelius-E. R. デフェイ, 背尾 學訳：“化学熱力
学”，みすず書房（1966），p.9
9) 豊田泰治：“酒”，東京大学出版会（1976），p.21
12, 318 (1967)
11) 上平 恒：“水とはにか”，講談社ブルーパックス
（1977），p.79
12) 西 信之：化学，47, 541（1992）
13) Nishi, N., Koga, K., Ohshima, C., Yamamoto, K.,
110, 5246 (1988)
14) 萩原 二, 西 信之：“クラスター”，産業図書（1994），p.96
15) 岩井 優：醸酵工学, 68, 514（1990）
16) 赤星亮一：HITACHI SCIENTIFIC INSTRUMENT
NEWS, 33 [4], 8 (1990)

松井健一：1960年東京工業大学工学部修士課程工学
学専攻修了.同年，旭化成工業（株）（現・旭化成（株））入
社。旭化成建材（株）常務取締役、（株）旭リサーチセン
ター専務取締役を経て1997年退社した後，同
年.水環境科学研究所所属，現在，同所の代表・所長，（株）旭
リサーチセンター顧問，趣味：水と酒に深く親しむこと。