CASE REPORT

MR Diagnosis of Steroid Cell Tumor of the Ovary: Value of Chemical Shift Imaging

Keiko SAKAMOTO1, Ritsuko FUJIMITSU1, Mikiko IDA1, Shinji HORIUCHI2, Yoshihiro HAMADA3, and Kengo YOSHIMITSU1*

Departments of 1Radiology, 2Obstetrics and Gynecology, and 3Pathology, Faculty of Medicine, Fukuoka University
7–45–1, Nanakuma, Jonan-ku, Fukuoka 814–0180, Japan

(Received August 19, 2009; Accepted October 1, 2009)

A 53-year-old asymptomatic woman was found to have a pelvic mass at medical examination. Magnetic resonance (MR) imaging revealed a 4-cm solid mass at the right adnexal region, which showed marked hyperintensity on T2-weighted imaging and marked enhancement on post-contrast T1-weighted imaging. Chemical-shift imaging showed slight but significant signal loss on out-of-phase images, which suggested the presence of intratumoral lipid. The resected specimen exhibited typical features of steroid cell tumor, and Oil Red O stain was positive for cytoplasmic lipid.

Keywords: chemical shift, fat, MR, ovary, steroid cell tumor

Introduction

Steroid cell tumor of the ovary is rare, accounting for only 0.1 to 0.2% of all ovarian tumors.1 Presence of intracytoplasmic fat within the tumor cells is one of its pathological characteristics.1–5 Theoretically, chemical shift magnetic resonance (MR) imaging (CSI) should demonstrate this cytoplasmic lipid,2,6–9 but to the best of our knowledge, its use has not been reported. Therefore, we report such a case in whom preoperative CSI successfully demonstrated a small amount of lipid in the steroid cell tumor of the ovary.

Case Report

A 53 year-old woman who had been asymptomatic was found to have a pelvic mass on the right side of the pelvis on ultrasonography at physical examination. She was referred to our hospital for further work-up of the mass and possible treatment. Laboratory data on admission were mostly unremarkable, and serum estrogen and progesterone levels were within normal limits. Carbohydrate antigen 125 was at the marginal level (37 U/mL, normal range <35 U/mL), and other tumor markers, including carcinoembryonic antigen and carbohydrate antigen 19–9, were negative. Because the patient presented no sign to suggest hirsutism, serum androgen level was not measured preoperatively. MR imaging was obtained with a 1.0T clinical unit (NT Intera, Philips Medical Systems, Best, The Netherlands). The tumor showed marked homogeneous hyperintensity on fast spin-echo (FSE) T2-weighted image (repetition time/echo time/number of echo-train (TR/TE/ET) = 4500 ms/100 ms/9) (Fig. 1A) and was strongly enhanced after intravenous administration of 0.1 mmol/kg gadolinium-diethylenetriamine penta-acetic acid (DTPA) (Magnevist, Bayer-Schering, Osaka, Japan) on fat-saturated FSE T1-weighted image (TR/TE/ET = 400 ms/12 ms/5) (Fig. 1B). On CSI (dual-echo field-echo, TR/TE/flip angle = 227.5/3.5 and 6.9/80°), the tumor showed slight but significant signal loss on out-of-phase image (Fig. 1C, D), suggesting the presence of a small amount of fat, although this signal loss was not been recognized as positive at visual inspection at the time of preoperative interpretation. Solid tumor with mucinous or myxomatous stroma was considered, and preoperative differential diagnoses included metastatic adenocarcinoma to the ovary, leiomyoma with myxoid degeneration arising from broad ligament or tube, sclerosing stromal tumor, and other possibilities. Because no significant primary malignancy was found despite extensive preoperative work-up of the whole body, simple right oophorectomy...
Fig. 1.
A: Axial T_2-weighted fast spin-echo image through the mid-pelvis. A 4-cm mass with marked hyperintensity is shown (arrow). Ascitic fluid is also noted at the cul-de-sac. B: Axial T_1-weighted spin-echo image after contrast injection through the mid-pelvis. The tumor is markedly enhanced (arrow). Non-enhancing areas at the central part of the tumor (asterisk) corresponded to intratumoral hemorrhage at pathological correlation. C: In-phase image of chemical shift magnetic resonance (MR) imaging corresponding to 1A and 1B. The tumor exhibited intermediate to low signal intensity (arrow). Signal intensity was measured to be 598, avoiding the central hemorrhage by referring to 1B. D: Out-of-phase image of chemical shift MR imaging. There is faint to slight signal intensity loss compared to 1C (arrow). Signal intensity was measured to be 538, placing the region of interest exactly at the same site as 1C by copy-and-paste method. Signal loss ratio was calculated to be 10%.

was performed. The resected specimen showed clusters of luteinized cells in edematous stroma, along with some crystal formations, suggesting the diagnosis of steroid cell tumor, particularly, Leydig cell tumor. Periodic-acid Schiff or Alcian blue stain was negative for mucin, and Oil Red O stain was positive for intracellular lipid (Fig. 2), confirming the diagnosis.

Discussion
Steroid cell tumors are defined as ovarian neoplasms composed entirely of cells resembling typical steroid hormone-secreting cells, i.e., lutein cells, Leydig cells, and adrenal cortical cells. Stromal luteoma, Leydig cell tumor, and steroid cell tumor not otherwise specified (NOS), are included in this group, all of which are very rare. Some tumors in the last category are clinically malignant, whereas those in the first 2 categories are benign. In most

Fig. 2. Microscopic finding of the tumor with Oil Red O staining (original magnification $\times 400$). Intracellular black dots of various size (originally in red) indicate the presence of cytoplasmic lipid.
cases, these tumors produce androgen and typically present with hirsutism, but estrogen-producing tumors have also been reported. In the present case, because no symptoms or signs suggested hyperandrogenic state, serum androgen level was not evaluated; preoperative estrogen and progesterone levels were within normal limits. There is little imaging literature on these tumors, although Leydig cell tumors are reported as hypoattenuating masses on computed tomography (CT). However, none of these showed high signal intensity on T1-weighted imaging (T1WI). Signal intensity on T2-weighted imaging (T2WI) varies according to the contents of the fibrous stroma. Steroid cell tumors NOS are reported as mixed solid and cystic masses. Reported tumors showed intermediate intensity on T2WI and intense enhancement with contrast material.

In the present case, marked hyperintensity on T2WI may be attributable to the edematous stroma and paucity of fibrous component. The marked enhancement after contrast administration is concordant with the previous report, possibly representing abundant blood vessels supplying the tumorous tissues as well as abundant edematous stroma.

The presence of cytoplasmic lipid has been known to be a pathological characteristic of steroid cell tumors. On radiological imaging, however, detection of this cytoplasmic lipid has been unsuccessful to the best of our knowledge, although the possibility of its detection with CSI has been suggested. CSI has been utilized in the detection of small amounts of fat throughout the body, typically in diagnosing adrenal adenoma, clear cell or papillary renal cell carcinoma, and other tumors. Retrospective review of CSI in the present case revealed that signal loss ratio was calculated to be 10% (Fig. 1D), with the ratio defined as (SIin–SIout)/SIin, where SIin stands for signal intensity at in-phase image and SIout for that at out-of-phase image. Although subtle, 10% signal loss ratio is considered sufficient to suggest the presence of fat according to the literature. This is the first case reported in which CSI successfully demonstrated cytoplasmic fat in steroid cell tumors. Correct diagnosis of steroid cell tumor might have been suggested if quantitative analysis of CSI was performed preoperatively.

In conclusion, we report a case of a steroid cell tumor (Leydig cell tumor), in which preoperative CSI successfully demonstrated the presence of cytoplasmic lipid. Along with the other characteristic imaging features, signal loss on out-of-phase of CSI may serve as an important adjunct sign of steroid cell tumor representing intratumoral lipid in this entity.

Acknowledgements

We thank Professor Shingo Miyamoto, chair of the Department of Gynecology and Obstetrics of the Faculty of Medicine at Fukuoka University, and Professor Kazuki Nabeshima, of the Department of Pathology at Fukuoka University Hospital, for providing clinical or pathological information in this report.

References