Detection of Cerebral Venous Sinus Thrombosis on a R2* Map

Yuki Shinohara1*, Ayumi Kato1, Eijiro Yamashita2, Jun-ichi Ueyama3, Naohiro Yoneda4, and Toshihide Ogawa1

Keywords: cerebral venous sinus thrombosis, magnetic resonance imaging, R2* map, IDEAL IQ

Cerebral venous sinus thrombosis (CVST) is a critical cerebrovascular disease with no standard imaging protocol currently established. Digital subtraction angiography and contrast-enhanced CT or MR venography (MRV) has been considered the gold standard for diagnosing CVST, whereas they have a risk of thromboembolic events or side effects of contrast media. Recently, non-contrast MRV has been used for diagnosing CVST due to its non-invasiveness. Loss of flow voids on T1- and T2-weighted imaging would be useful findings for indicating CVST, but the sensitivities may not always be sufficient. Although T2*-weighted imaging (T2*WI) demonstrates susceptibility blooming effect corresponding to the thrombus, it is difficult to distinguish from other paramagnetic substances such as venous congestion or hemorrhage, and strong susceptibility artifacts from the skull base deteriorate image quality in the posterior fossa. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) IQ (GE Healthcare, Milwaukee, WI, USA) is a commercial software equipped with 3D gradient multi-echo chemical-shift based water-fat separation and simultaneous R2* estimation techniques. A quantitative iron image termed R2* map as well as in- and out-of-phase images, water and fat images, and fat fraction map can be obtained by a single scanning with short acquisition time.1–3

We present a patient of 2-month-old boy with severe diarrhea and tonic convulsion. MR examination was performed on a Discovery MR750w 3.0T (GE Healthcare, Milwaukee, WI, USA) using a 32-channel head coil. The sedation was performed during MRI by slow intravenous injection of thiopental sodium (Ravonal; Tanabe-Mitsubishi, Osaka, Japan). T2*WI showed a prominent susceptibility effect in the right transverse sinus, left transverse-sigmoid sinus, left vein of Labbé, left basal vein of Rosenthal, straight sinus, vein of Galen, and bilateral internal cerebral, thalamostriate, and atrial veins. R2* map by IDEAL IQ also showed a strong susceptibility effect in those vessels, which was distinguishable from the signal intensity of normal veins or parenchyma clearer than that on T2*WI. MRV demonstrated signal loss in the left transverse-sigmoid sinus, straight sinus, vein of Galen, and bilateral internal cerebral, thalamostriate, and atrial veins. (Figs. 1 and 2). Clinical symptoms showed improvement after receiving rehydration and anti-coagulant therapies, and follow-up MRI showed reduction of susceptibility effect on R2* map with increased signal intensity at the occluded vessels on MRV. The parameter of IDEAL IQ was as follows: TR, 8.3 ms; TE, six different echoes ranging from 1.2 to 7.2 ms; FOV, 21 cm; matrix, 256 × 256; slice thickness, 2.0 mm; 60 slices; acquisition time, 1 min 47 s.

We have reported that the R2* map enables the generation of quantitative susceptibility-sensitive image that can detect intra-arterial acute thrombus with high accuracy.2,3 To our knowledge, this is the first report to present on the utility of R2* map in CVST. The short multi-echo acquisition for R2* map enables slight differences in T2 decay caused by susceptibility effect to be distinguished, and allows them to be visualized with reliable image contrast. R2* map may have a great potential as a complimentary MRI protocol for acute CVST.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
References

