Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182

This article has now been updated. Please use the final version.

Quantitation Error in 1H MRS Caused by B1 Inhomogeneity and Chemical Shift Displacement
Hidehiro WatanabeNobuhiro Takaya
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: mp.2017-0062

Details
Abstract

Purpose: The quantitation accuracy in proton magnetic resonance spectroscopy (1H MRS) improves at higher B0 field. However, a larger chemical shift displacement (CSD) and stronger B1 inhomogeneity exist. In this work, we evaluate the quantitation accuracy for the spectra of metabolite mixtures in phantom experiments at 4.7T. We demonstrate a position-dependent error in quantitation and propose a correction method by measuring water signals.

Materials and Methods: All experiments were conducted on a whole-body 4.7T magnetic resonance (MR) system with a quadrature volume coil for transmission and reception. We arranged three bottles filled with metabolite solutions of N-acetyl aspartate (NAA) and creatine (Cr) in a vertical row inside a cylindrical phantom filled with water. Peak areas of three singlets of NAA and Cr were measured on three 1H spectra at three volume of interests (VOIs) inside three bottles. We also measured a series of water spectra with a shifted carrier frequency and measured a reception sensitivity map.

Results: The ratios of NAA and Cr at 3.92 ppm to Cr at 3.01 ppm differed amongst the three VOIs in peak area, which leads to a position-dependent error. The nature of slope depicting the relationship between peak areas and the shifted values of frequency was like that between the reception sensitivities and displacement at every VOI.

Conclusion: CSD and inhomogeneity of reception sensitivity cause amplitude modulation along the direction of chemical shift on the spectra, resulting in a quantitation error. This error may be more significant at higher B0 field where CSD and B1 inhomogeneity are more severe. This error may also occur in reception using a surface coil having inhomogeneous B1. Since this type of error is around a few percent, the data should be analyzed with greater attention while discussing small differences in the studies of 1H MRS.

Content from these authors
© 2017 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top