Crystallographic anisotropy of the intrinsic Gilbert damping for single-crystalline Fe film

Y. Kasatani*, and Y. Nozaki*++

Department of Physics, Keio Univ., 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan

We experimentally investigated the crystallographic anisotropy of the intrinsic Gilbert damping constant in single crystalline Fe(001) film deposited on MgO(001) substrate. The frequency-domain ferromagnetic resonance (FMR) spectrum was measured at given external magnetic fields via a vector network analyzer. From the field-domain FMR linewidth obtained as a function of resonant frequency, the intrinsic Gilbert damping constants along the crystallographic axes in the (001) plane were successfully obtained by evaluating the extrinsic influence of two magnon scattering and inhomogeneity. A four-fold crystalline anisotropy of the intrinsic Gilbert damping constant, similar to the magnetic crystalline anisotropy in the (001) plane, was clearly observed. Furthermore, we found that the intrinsic Gilbert damping constant along the easy axis was smaller than that along the hard axis.

Key words: Gilbert damping, single crystal, thin film, ferromagnetic resonance

1 Introduction

Single-crystalline ferromagnetic thin films will be predominantly used in future spintronics devices. Controlling the Gilbert damping constant α in ferromagnetic thin films is crucial for future spintronics applications. In ferromagnetic materials, the strength of the spin-orbit interaction is responsible for both the static and dynamic properties of magnetization, for example, a crystalline magnetic anisotropy and magnetization damping.1–19

Thus, similar to the crystalline magnetic anisotropy, one can expect that the Gilbert damping constant governing the magnetization damping will also show a crystallographic anisotropy. However, it is still unclear whether the Gilbert damping constant has crystallographic anisotropy. Various theoretical approaches have been proposed to describe the anisotropy of the Gilbert damping term in the Landau–Lifshitz–Gilbert equation, which describes the precessional motion of magnetization.1,4–11

There are two types of anisotropy of α, a rotational anisotropy and an orientational anisotropy. The former is due to the change in damping for different directions of the temporal change in magnetization $\frac{d\mathbf{M}}{dt}$, and the latter is attributed to the damping dependence on the momentary orientation of $\mathbf{M}(t)$. Consequently, the Gilbert damping term can be defined by a damping matrix.7–9

In the case of uniform mode, the orientational anisotropy mainly determines the Gilbert damping term. Seib et al.7) and Gilmore et al.7) numerically found that the Gilbert damping constant for bcc-Fe was smallest along (100), larger along (110), and at its largest along (111). Recently, Meckenstock et al.17) and Isogami et al.18) experimentally found that the Gilbert damping constant along the magnetic easy axis was smaller than that along the hard axis for single-crystalline Fe and Fe$_3$N films.

To develop a better understanding of its anisotropic behavior, it is important to interpolate the Gilbert damping constant for many crystallographic orientations between the easy and hard axes. Furthermore, it is important to assess the common experimental methods used to measure the intrinsic Gilbert damping constant of single-crystalline ferromagnetic thin films. Generally, the ferromagnetic resonance (FMR) linewidth is measured to determine the Gilbert damping constant.12–19 The linewidth is, however, not simply in proportion to the intrinsic Gilbert damping constant because extrinsic contributions such as two magnon scattering (TMS) and inhomogeneous line-broadening (ILB) also increase the FMR linewidth.11,16 To evaluate the intrinsic Gilbert damping constant precisely, those extrinsic contributions must be excluded. The out-of-plane angular dependence of the linewidth is typically measured to extract the intrinsic Gilbert damping constant from the FMR spectrum data.12–19

However, in the case of single-crystalline films, the out-of-plane angular dependence of the damping constant should be considered. Namely, we need an alternative method to evaluate the extrinsic contributions at a given crystallographic axis. Note that the frequency dependence of the field-domain linewidth ΔH owing to the intrinsic Gilbert damping totally differs from the frequency dependence of both TMS and ILB. Thus, vector network analyzer (VNA)-FMR spectroscopy, which can measure the frequency dependence of ΔH without changing the direction of magnetization, is an ideal method to examine the crystallographic anisotropy of the intrinsic Gilbert damping constant.

In this paper, we experimentally demonstrated the anisotropy of the intrinsic Gilbert damping constant for single-crystalline Fe(001) film via VNA-FMR spectroscopy. A clear four-fold symmetry of the intrinsic Gilbert damping was observed in the Fe(001) plane. Similar to the result of previous numerical studies,7 we found that the intrinsic Gilbert damping constant along the easy axis was smaller than that along the hard axis.
Fig. 1 (a) RHEED image of the Fe(001) film. The incident electron beam was parallel to the MgO[100] direction. The spots of (200), (211), and (21T) derived from Fe(001) plane were observed. (b) Epitaxial orientation in Fe(001)/MgO(001). The gray and white circles represent Fe and MgO, respectively.

2 Experimental

Single-crystalline Fe(001) film was deposited on a MgO(001) substrate using a molecular beam epitaxy in ultrahigh vacuum (UHV-MBE). Before the deposition, we cleaned the MgO substrate according to the following procedure. The MgO substrate was washed for 10 minutes each with 2-butanone, acetone, and 2-propanol using an ultrasonic cleaner. After the cleaning, the MgO substrate was set in the MBE chamber and flushed under 5.0 × 10⁻⁷ Pa at 400 °C for 2 h. Then, the substrate was cooled to 100 °C, and the Fe was deposited on the MgO substrate at 0.01 nm/s. The thickness of the Fe film was 50 nm. After the deposition, the Fe film was annealed at 400 °C for 2 h. Later, in-situ reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) were observed (see Figs. 1 and 2).

In order to observe the FMR spectrum of the Fe(001) film via a VNA, the film was patterned into wire-shaped structures using electron beam lithography and an Ar⁺ milling technique. The wires were 240-µm long and 10-µm wide. In total, 12 wires with different crystalline orientations were fabricated. The angle between Fe[100] and the longitudinal axis of the wire, δ(100), was fabricated between 0° and 165° in 15° increments. After fabricating the Fe wires, a 150-nm-thick insulating SiO₂ layer was sputtered onto the film plane. Finally, an electrically shorted coplanar waveguide (CPW) comprising Ti (5 nm) / Au (80 nm) was fabricated onto each of the Fe wires. The 10-µm-wide center signal line of CPW was overlapped onto the Fe wire. An optical micrograph of a representative sample and the schematic cross-section are shown in Figs. 3(a) and 3(b), respectively.

The sample was placed on an in-plane biaxial electromagnet that generates x- and y-axes magnetic fields. The CPW was electrically connected to the VNA using a ground-signal-ground-type microwave probe, which produces an alternating magnetic field.
ReΔS_{11}(dB)

\begin{center}
\begin{tabular}{c|c|c}
H_x(Oe) & Fe[100] & Fe[110] \\
\hline
-1000 & Exp. & Exp. \\
-500 & Exp. & Exp. \\
0 & Exp. & Exp. \\
500 & Exp. & Exp. \\
1000 & Exp. & Exp. \\
\end{tabular}
\end{center}

Fig. 4 Normalized magnetization curves for the Fe[100] and Fe[110] directions. Saturation magnetization was 1446 emu/cm3.

![Diagram](image)

Fig. 5 Typical FMR spectrum for Fe[100] ($\phi_{(100)}=0$) measured at $H_x=620$ Oe. The dashed curve represents the fit for Eq. (2).

2(b) shows the result of the ϕ scan measured along the Fe(110) plane. Four-fold symmetry was clearly observed here. Figures 2(c) and (d) show the results of the 2θ–ω scan for Fe(200) and MgO(220). By the Scherrer equation, the crystallite size τ_e was estimated as

$$\tau_e = \frac{K_{Sch} \lambda_{X-ray}}{\beta_{Sch} \cos \theta_e},$$

where K_{Sch} represents the shape factor (generally ≈ 0.9) and λ_{X-ray} is the wavelength of the X-ray source. β_{Sch} and θ_e are the full-width at half-maximum (FWHM) and the Bragg angle, respectively. In this experiment, $\lambda_{X-ray}=0.154$ nm, $\beta_{Sch}=0.208 \pm 0.003^\circ$ and $\theta_e=64.9^\circ$, respectively. From those values, $\tau_e=46.30 \pm 0.75$ nm was calculated. As shown in Fig. 2(e), the FWHM of the ϕ–2ϕ scan, $\Delta \phi$, is estimated from the Gaussian fitting as 0.576$^\circ \pm 0.002^\circ$.

Figure 4 shows the normalized in-plane magnetization curve measured using a superconducting quantum interface device with the magnetic field applied along Fe[100] and [110]. The saturation magnetization M_s was 1446 emu/cm3 and the saturation field was approximately 600 Oe at room temperature. As shown in Fig. 4, the hysteresis curve of Fe[110] has the knee at the magnetic field of 600 Oe, which corresponds to the anisotropy field in the (001) plane.

Figure 5 shows the FMR spectrum for the Fe wire with $\phi_{(100)}=0^\circ$ measured at $H_x=620$ Oe. A dip attributed to the microwave
absorption caused by FMR can be clearly seen at 15.1 GHz. For the VNA-FMR measurement, the real part of ΔS_{11} is given by

$$\text{Re}[\Delta S_{11}] = (C'\chi' + C''\chi'')f,$$

(2)

with the complex susceptibility $\chi = \chi' - i\chi''$ given by

$$\chi' = \frac{M_s f}{f^2 - (1 - \alpha_{\text{total}}^2)f^2} + 4\alpha_{\text{total}}^2 f^2$$

(3)

and

$$\chi'' = \frac{\alpha_{\text{total}}M_s f}{f^2 - (1 + \alpha_{\text{total}}^2)f^2} + 4\alpha_{\text{total}}^2 f^2$$

(4)

Here, α_{total} is the effective damping constant consisting of the intrinsic Gilbert damping constant and the extrinsic contributions from TMS and ILB. f_s is the resonant frequency and C' and C'' are coefficients that depend on the CPW geometry.23 Note that the imaginary part in Eq. (2) is used to separate out the influence of a small error in calibrating the S-parameter and/or a capacitive component of CPW. Experimental results were fitted by Eq. (2), and α_{total}, f_s, and C' and C'' were evaluated as fitting parameters. As indicated by the dashed line in Fig. 5, the experimental data were well fitted by Eq. (2). The frequency-domain FMR linewidth was given by $\Delta f = 2\alpha_{\text{total}}f_s$. The external field dependence of the FMR frequency along Fe[100] and Fe[110] are shown in Fig. 6.

The value of f_s satisfies following equation proposed by Shul24,

$$\left(\frac{f_s}{\gamma_0}\right)^2 = \frac{1}{M^2 \sin^2 \theta_m} \left[\frac{\partial^2 E}{\partial \theta_m^2} \frac{\partial^2 E}{\partial \phi_m^2} - \left(\frac{\partial^2 E}{\partial \theta_m \partial \phi_m}\right)^2 \right]_{\theta_m=\phi_m=0},$$

(5)

where γ_0 is the gyromagnetic ratio. The free energy E is given by the summation of the Zeeman energy E_{Zeeman}, demagnetizing energy E_d, and magnetic crystalline anisotropy energy E_a such that

$$E = E_{\text{Zeeman}} + E_d + E_a$$

(6)

where

$$E_{\text{Zeeman}} = -M \cdot H_{\text{ex}},$$

(7)

$$E_d = \frac{1}{2} \left(-\vec{\Sigma}M \right) \cdot M,$$

(8)

and

$$E_a = K_1 \left(\alpha_1^2 \alpha_2 + \alpha_2^2 \alpha_3 + \alpha_3^2 \alpha_1 \right).$$

(9)

Here, $\vec{\Sigma}$ is the demagnetizing tensor, K_1 is the first-order crystalline magnetic anisotropy constant, and $\alpha_i (i = 1, 2, 3)$ are the direction cosines of the magnetization with respect to the [100], [010], and [001] axes, respectively. The angle of the external field (magnetization) with respect to the direction perpendicular to plane is given by $\theta_m(\theta_m)$, and $\phi_m(\phi_m)$ represents the angle between the direction of the external field (magnetization) and longitudinal axis of the wire (see Fig. 3(c)). In this paper, we assumed H_{ex} was applied in the film plane, i.e., $\theta_m = \frac{\pi}{2}$. After the calculation, the elevation angle $\theta_m \approx \frac{\pi}{2}$ was obtained. By fitting f_s versus H_{ex} data for the [100] direction with Eq. (5), we evaluated $K_1 = 4.48 \times 10^5$ erg/cm3 and $\gamma_0 = 2.93 \times 10^6$ Hz/Oe.

In order to evaluate the saturation field of the magnetization along [110] from the calculated value of K_1, we calculated the stable azimuthal angle of the magnetization as a function of H_{ex}. Figure 7 shows the calculated azimuthal angle of the equilibrium direction of magnetization as a function of magnetic field applied along both [100] and [110]. As the strength of H_{ex} was smaller than 0.6 kOe, the magnetization deviates from the longitudinal axis because of the crystalline anisotropy of the Fe(001) film. Therefore, the bending in the H_{ex} dependence of f_s for Fe[110] is attributed to the inability of the magnetization to saturate along Fe[110] until the magnetic field becomes larger than 0.6 kOe. This is consistent with the magnetic field needed to saturate the magnetization along [110] (see Fig. 4). As a consequence, we can neglect the linewidth broadening due to a field dragging effect19,20 for fields greater than 0.6 kOe.

Figures 8(a) and 8(b) respectively show the polar plots of f_s and Δf with respect to δ_{100} measured at 2380 Oe. Clear fourfold symmetry in f_s is attributed to the fourfold symmetry of the
crystalline magnetic anisotropy of Fe(001). Similar symmetry was also observed in Δf. However, this is not direct evidence for the existence of crystalllographic anisotropy of the intrinsic Gilbert damping constant α_{int} in Fe(001) because there remains extrinsic contributions to the linewidth. To explore the crystalllographic anisotropy of the Gilbert damping constant, we excluded the extrinsic contributions as follows. According to the theoretical model proposed by Krivosisik, the effective FMR linewidth is represented by

$$\Delta H_{\text{eff}} = \frac{2}{\gamma_0} \alpha_{\text{int}} f_i + \Delta H_{\text{TMS}} + \Delta H_{\text{ILB}}. \quad (10)$$

The first term of the right-hand side of Eq. (10) is the linewidth due to the intrinsic damping with α_{int}, while the second and third terms of Eq. (10) are the line-broadening contributions from TMS and ILB, respectively. ΔH_{TMS} is given by

$$\Delta H_{\text{TMS}} = \left| \frac{\partial f_i}{\partial H_{\text{ex}}} \right|^2 \delta f_i \int_{|k|\leq \frac{2}{\pi} \xi} \delta(f_{\xi} - f_i) d\mathbf{k}. \quad (11)$$

Here, ∂H_x represents the distribution of the in-plane crystalline anisotropy field, f_i is the magnon frequency with wave number k, and ξ is the magnon mean free path. The magnon frequency f_i is written as

$$f_i = \gamma_0 \sqrt{H_{k.a} H_{k.b}}. \quad (12)$$

with

$$H_{k.a} = H_{ex} + \frac{A}{M_s} k_x^2 + (N_x - N_z) M_s \left(1 - \frac{e^{-kd}}{kd} \right) \sin^2 \psi_k. \quad (13)$$

and

$$H_{k.b} = H_{ex} + \frac{A}{M_s} k_y^2 + (N_y - N_z) M_s \left(1 - \frac{e^{-kd}}{kd} \right). \quad (14)$$

Fig. 9 shows the external magnetic field dependence of the field-domain FMR linewidth for Fe[100] ($\delta_{(100)} = 0^\circ$) and Fe[110] ($\delta_{(110)} = 90^\circ$). The dashed lines represent the linear fit for Eq. (15).

Fig. 10 shows ΔH_{TMS} as a function of f_i at ξ in the range 40–50 nm.

Here, N_x, N_y, and N_z are the components of the demagnetizing tensor in the x, y, and z axes, A is the exchange stiffness constant, and d is the thickness of the sample and ψ_k represents the angle between the direction of the magnon’s propagation and magnetization direction. The δ-function in Eq. (11) should be integrated when TMS occurs, i.e., $f_i = f_\xi$. The magnon mean free path ξ is considered to be less than or about the same as the crystallite size because magnetic properties differ between neighboring crystallites. Thus, the magnon wavenumber $|k|$ should be smaller than the inverse of the crystallite size, $|k| \geq \frac{2}{\pi} \xi$. Additionally, in a single-crystalline ferromagnet, ξ is considered to be approximately equal to the crystallite size $\tau_{\text{Fe}} (\xi \approx \tau_{\text{Fe}})$. Meanwhile, we can estimate δH_x from ΔH as $\delta H_x \approx \frac{\Delta H_{\text{TMS}}}{\tau_{\text{Fe}}} = 0.93 \text{ Oe}$.

In order to evaluate the TMS contribution, we calculated the frequency dependence of ΔH_{TMS} for different magnon mean free path ξ of 40, 45, and 50 nm (Fig. 10). The values of ΔH_{TMS} are much smaller than that of ΔH_{eff}, and thus the line-broadening
contribution from TMS is considered to be negligible. Equation (10) can therefore be rewritten as

\[
\Delta H_{\text{eff}} = \frac{2}{\gamma_0} \alpha_{\text{int}} f_i + \Delta H_{\text{ILB}}. \tag{15}
\]

As per Eq. (15), \(\Delta H_{\text{ILB}} \) is independent of the FMR frequency \(f_i \). From the difference in these frequency dependencies, we can evaluate those contributions independently.\(^{21}\) \(\Delta H_{\text{eff}} \) was fitted by the linear function of \(f_i \) as dashed lines in Fig. 9, and \(\alpha_{\text{int}} \) was estimated from the gradient of the dashed line. Figure 11 shows the polar plot of \(\alpha_{\text{int}} \) with respect to \(\alpha_{[100]} \). As shown in Fig. 11, \(\alpha_{\text{int}} \) shows four-fold symmetry in Fe(001). Small inconsistencies between the crystallographic axes and directions showing the local minima of \(\alpha_{\text{int}} \) may be due to imperfections in the microfabrication of the Fe wire. Figure 11 also suggests that \(\alpha_{\text{int}} \) along [100] is smaller than that along [110]. This tendency is consistent with the numerical study conducted by Gilmore et al.\(^7\) Namely, the anisotropy in the spin–orbit interaction responsible for the crystalline magnetic anisotropy also leads to the anisotropy of \(\alpha_{\text{int}} \) with similar symmetry. Our experimental result implies that the anisotropy of \(\alpha_{\text{int}} \) has a great effect on the performance of spintronics devices comprising single-crystalline ferromagnetic thin films.

4 Summary

We have demonstrated the crystalline anisotropy of the intrinsic Gilbert damping for single-crystalline Fe(001) film. FMR spectra with given crystalline axes were measured via VNA-FMR spectroscopy. The intrinsic contributions to the FMR linewidth from two-magnon scattering and inhomogeneous line-broadening were separated from the intrinsic damping effect by way of a theoretical approach. A four-fold symmetry in \(\alpha_{\text{int}} \) was clearly observed, and the value of \(\alpha_{\text{int}} \) along the easy axis was smaller than that along the hard axis. This interesting characteristic should be considered when epitaxial ferromagnets are applied to spintronics devices of the future.

Acknowledgments The authors appreciate H. Kakizakai and Prof. T. Ono for SQUID measurements, and Prof. G. Tatara, Prof. J. Shibata and Prof. A. Sakuma for theoretical discussions of the Gilbert damping mechanism, and also thank Prof. S. Mizukami for analytical advice on excluding TMS contribution.

References

Received Nov. 5, 2014; Accepted Aug. 6, 2015