Occurrence of aflatoxins in processed chili pepper sold in Myanmar

Chaw Nu Nu Aye1,2, Hiroyuki Nakagawa2,3, Masayo Kushiro2

1Department of Food and Drug Administration, Ministry of Health and Sports, Pyi Gyi Zayar Road, Zabuthiri Township, Naypyitaw, Myanmar
2Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
3Advanced Analysis Center, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan

Abstract
A limited surveillance of aflatoxins (AFs) contamination was conducted with ten samples of processed chili pepper (CP) retailed in commercial market in Myanmar during 2017. All samples were dried and ground for consumption. The concentrations of major AFs, aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2), in these samples were quantitatively analyzed by high-performance liquid chromatography-fluorescence (HPLC-FL) detection after immunoaffinity column purification. Each value was confirmed by spike and recovery test. The contamination of AFB1 was detected in nine samples except for one sample (CP-3). That of AFB2 was detected in four samples (CP-6, CP-7, CP-8, and CP-9). One sample with the highest concentration of AFB1 and AFB2 (CP-8) showed the value of total AFs (sum of major four AFs) above 10 µg/kg, while others showed below 10 µg/kg, the maximum permissible limit of total AFs level set by many countries. No contamination of AFG1 and AFG2 was found in ten samples. The data obtained here suggest that CP may have affinity to Aspergillus flavus, a B-type AFs producer.

Introduction
Mycotoxins are toxic chemical substances produced by a variety of fungi which contaminate food1,2. Toxicity due to mycotoxins is almost always insidious, without any overt indication of effects on health in the short terms. For this reason, the health effects of mycotoxins are among the most neglected areas of medical science3. Mycotoxin contamination is not only a cause of health hazards to humans and animals but is also a global problem for the agricultural economy. The Food and Agriculture Organization (FAO) of the United Nations estimates that 25% of the world’s food crops are affected by mycotoxins, of which the most notorious are aflatoxins (AFs)4.

Among mycotoxins, AFs are hepatocarcinogenic and being the most toxic mycotoxins mainly produced by some aflatoxigenic strains of Aspergillus flavus and A. parasiticus. The most common AFs are aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2), which often co-occur in food and represent total AFs. They are among the most potent mutagenic and carcinogenic compounds known to be produced in nature. AFs contamination caused by aflatoxigenic fungi is the most serious issue for safety throughout the world, and various agricultural commodities have been found to be contaminated with aflatoxigenic fungi and/or AFs. Although the presence of Aspergillus fungi does not necessarily indicate AFs contamination, there is certainly an increased risk5. Aflatoxigenic fungi are known to exist in tropical/subtropical area, where is favorable climate condition for fungal propagation and AFs production6. The climate and geographical location of Myanmar provide favorable conditions of the AFs contamination in agricultural commodities in the field as well as post-harvest (during...
Chili pepper (CP), made from red chili (Capsicum spp.), is one of the most popular spices consumed in cuisines worldwide. Contamination of spices with AFs can take place in the field, during drying and during the storage and processing stages. CP is mainly produced in warm regions including Southeast Asia. There are reports of CP contaminated with AFs in various countries, sometimes with high prevalence. However, there exists little report of AFs surveillance in spices including CP sold in Myanmar, while Myanmar people widely used CP powder for culinary purposes. In this study, we firstly analyzed the amounts of AFB1, AFB2, AFG1, and AFG2 concentrations in CP sold in Myanmar markets, using in-house validated method. Each value was measured by HPLC-FL apparatus after immunoaffinity column purification with confirmation by spike and recovery test.

Materials and Methods

Samples, materials and reagents

Ten bags of processed chili pepper (CP) were purchased at several markets in Myanmar, from April 2017 to September 2017. CP-1 was a KSS chili pepper, CP-2 was a Daw Htwe fresh and pure chili pepper, CP-3 was a Myo Ma Sin Phyu Taw coarse ground chili, CP-4 was a Myo Ma Sin Phyu Taw chili pepper, CP-5 was a Daw Htwe fine ground chili pepper, CP-6 was a Nan Dae Wei chili pepper, CP-7 was a KSS fine ground chili pepper, CP-8 was a U Ngwe Soe chili pepper, CP-9 was a Number 1 chili pepper and CP-10 was a U Hla Tun chili pepper. They were dried and ground ones for cuisine ingredients.

An immunoaffinity column (IAC) AFLAKING was purchased from HORIBA (Kyoto, Japan). Standard aflatoxin B1 (AFB1), and aflatoxin G1 (AFG1) were purchased from Acros Organics, Geel, Belgium, while aflatoxin B2 (AFB2), and aflatoxin G2 (AFG2) were purchased from Fujifilm Wako, Osaka, Japan. They were dissolved in acetonitrile as a working solution containing 50 ng/ml of each. Acetonitrile, methanol and water were HPLC grade.

Aflatoxin analysis

For sample preparation (shown in Scheme 1), ca. 30 g of CP samples were ground and mixed in cups of blender (Waring, laboratory blender) and 2.5-5 g portions of grind samples were put into 50 ml centrifuge tubes (2 each, one for Blank, and the other for Spike). Either 250 µl of 100% acetonitrile (for Blank) or 50 ng/ml AFs mixture (AFB1, AFB2, AFG1 and AFG2) standard solution (for Spike) was added and kept at room temperature for 15 min. Then 0.5-1.5 g of sodium chloride was added and kept at room temperature for 15 min. Then 0.5-1.5 g of sodium chloride was added and kept at room temperature for 15 min.
was added. They were extracted with 20 ml of methanol - water (41, v/v), vortexed and sonicated. After centrifuged at 1,470 g for 10 min, 10 ml of the supernatant was taken and filled up to 50 ml with water. The diluted solution was filtrated, and 10 ml of the filtrate was passed through an IAC AFLAKING, which was pre-conditioned with phosphate buffered saline (PBS). IAC was washed 3 times with 3.5 ml of water, then 1 ml of 100% acetonitrile was applied onto IAC 3 times to elute AFS by gravity. Collected eluents were evaporated, and 0.1 ml of trifluoroacetic acid (TFA) was added for derivatization of AFB1 and AFG1 to enhance their fluorescence. After kept at room temperature for 15 min, 0.9 ml of acetonitrile - water (1:9, v/v) was added, and the dissolved samples were directly injected into the HPLC-FL system (Shimadzu, Kyoto, Japan).

HPLC-FL analysis was performed using a Capcell Pak C18 column of 3.0 × 250 mm with a 5-µm particle size (Osaka Soda, Osaka, Japan). The mobile phase was composed of acetonitrile, methanol, and water (10:30:60, v/v/v), and used with a flow rate of 0.3 ml/min. The column heater was set at 40°C, and the injection amount was 5 µl. The AF-TFA derivative solution was detected by FL absorption using wavelength of 365 nm (excitation) and 450 nm (emission). Six standard concentrations of AFS working solution, covering a range from 1 to 20 ng/ml (1, 2, 5, 10, 15, and 20 ng/ml), were employed, and calibration curves were plotted with peak areas against the concentration of Afs (ng/ml). The linearity of the calibration plot was demonstrated by calculating the correlation coefficient. The limit of detection (LOD) was defined as the concentration that was three times higher than the standard deviation of the blank signal. The LODs (ng/g) were 0.4, 0.2, 0.7, and 0.5 for AFB1, AFB2, AFG1, and AFG2, respectively, except for one sample (CP-8). For CP-8, the LODs (ng/g) were 0.8, 0.4, 1.4, and 1.0 for AFB1, AFB2, AFG1, and AFG2, respectively. The limit of quantification (LOQ) was set as 1.5 times higher value of LOD.

Results and Discussion

AFs amounts in CP samples were determined by in-house validated analytical method using Blank and Spike analyses as shown in Table 1. Recovery ratios were 68-124%, 84-116%, 72-126%, and 68-120% for AFB1, AFB2, AFG1, and AFG2, respectively. Most of these values were inside of the range from 70 to 120%, which is in the generally accepted range for in-house validation of analytical methods using spike and recovery tests. Although some data were outside this range, we consider that it will not matter for practical analyses because it showed a slightly lower (68%) or higher (124%, 126%) values. As for CP-7 sample, the recovery ratios were 160%, 124%, 132%, and 128% for AFB1, AFB2, AFG1, and AFG2, respectively, when 0.5 g of salt was used. On the other hand, the recovery ratios became 124%, 116%, 124%, and 120% for AFB1, AFB2, AFG1, and AFG2, respectively, when 1.5 g of salt was used for CP-7. Although the values of AFB1 and AFB2 were same (8.2 ppb and 0.3 ppb) under both conditions, increase of salt amount might be effective to obtain proper recovery ratio by salting-out of biopolymers. As for CP-8 sample, the recovery ratios were unstable even when the salt amounts were increased, showing higher AFB1 value in blank sample than that in spiked sample. The reduction of sample amount to half worked well for a proper recovery ratio of AFB1 for CP-8, presumably due to dilution of biopolymers which could interfere with antigen-antibody reaction.

As shown in Table 1, AFB1 was detected at the concentration of more than 0.8 ppb, except for CP-3. CP-8 showed highest AFB1 value with the concentration of 39.2 ppb (Fig.1). AFB2 were detected at concentration of 0.4, 0.3, 2.4, and 0.4 ppb for CP-6, CP-7, CP-8, and CP-9, respectively. On the other hand, AFG1 and AFG2 were not detected. In the current study of limited surveillance, one sample (CP-8) out of ten exceeded the regulatory limit for total AFS (10 µg/kg) in many

<table>
<thead>
<tr>
<th>Sample number</th>
<th>AFB1 (ppb)</th>
<th>AFB2 (ppb)</th>
<th>Recovery (AFB1)</th>
<th>Recovery (AFB2)</th>
<th>Recovery (AFG1)</th>
<th>Recovery (AFG2)</th>
<th>Total AFS (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-1</td>
<td>8.6</td>
<td><LOD</td>
<td>88%</td>
<td>92%</td>
<td>80%</td>
<td>68%</td>
<td>8.6</td>
</tr>
<tr>
<td>CP-2</td>
<td>2.2</td>
<td><LOD</td>
<td>72%</td>
<td>100%</td>
<td>112%</td>
<td>88%</td>
<td>2.2</td>
</tr>
<tr>
<td>CP-3</td>
<td><LOD</td>
<td><LOD</td>
<td>92%</td>
<td>84%</td>
<td>96%</td>
<td>80%</td>
<td><LOD</td>
</tr>
<tr>
<td>CP-4</td>
<td>0.8</td>
<td><LOD</td>
<td>112%</td>
<td>116%</td>
<td>72%</td>
<td>80%</td>
<td>0.8</td>
</tr>
<tr>
<td>CP-5</td>
<td>1.2</td>
<td><LOD</td>
<td>68%</td>
<td>104%</td>
<td>96%</td>
<td>88%</td>
<td>1.2</td>
</tr>
<tr>
<td>CP-6</td>
<td>7.5</td>
<td>0.4</td>
<td>120%</td>
<td>112%</td>
<td>124%</td>
<td>120%</td>
<td>7.9</td>
</tr>
<tr>
<td>CP-7*</td>
<td>8.2</td>
<td>0.3</td>
<td>124%</td>
<td>116%</td>
<td>124%</td>
<td>120%</td>
<td>8.5</td>
</tr>
<tr>
<td>CP-8**</td>
<td>39.2</td>
<td>2.4</td>
<td>77%</td>
<td>95%</td>
<td>126%</td>
<td>112%</td>
<td>41.6</td>
</tr>
<tr>
<td>CP-9</td>
<td>8.5</td>
<td>0.4</td>
<td>92%</td>
<td>100%</td>
<td>112%</td>
<td>116%</td>
<td>8.9</td>
</tr>
<tr>
<td>CP-10</td>
<td>1.5</td>
<td><LOD</td>
<td>88%</td>
<td>108%</td>
<td>104%</td>
<td>104%</td>
<td>1.5</td>
</tr>
</tbody>
</table>

*1.5 g of salt was used.
**2.5 g of sample was used.
countries including European Commission. More extensive study will be needed in the follow-up research.

In previous studies in other countries, high prevalence of natural contamination of CP with AFB₁ was reported. For example, 77% in Sri Lankan CP12, 100% (10 out of 10) in Iranian red pepper13, and 96.7% (29 out of 30) in Thailand CP14. In most cases, besides AFB₁, AFB₂ was sometimes simultaneously detected, while AFG₁ nor AFG₂ was not detected, as in the case of this study.

It is widely recognized that CP is susceptible to \textit{A. flavus}, an aflatoxigenic species of \textit{Aspergillus}, which is a typical B-type AFs producer15. There is no information of fungal species responsible for AFB₁ and AFB₂ contam-
infection of Myanmar CP found in this study, however; A. flavus adherence to Myanmar CP is strongly suggested since B-type AFs were exclusively detected in nine of ten CP samples from various markets. Soil and air are the main inoculums for causing contamination in crude spices in field. Even where good manufacturing practices have been followed, AFs are considered unavoidable contaminants of food and feed. Spices are collected in tropical areas using traditional methods, which mean products are exposed to contaminants collected in tropical areas using traditional methods, as well as during harvesting, handling and packing. Further studies to identify fungal species adherent to Myanmar CP should be conducted to elucidate the source of AFs contamination.

Acknowledgements

This work was supported by JICA-KIRIN fellowship program (2017-2018), and partially supported by JSPS KAKENHI Grant Number JP16H05785. We are grateful to Dr. Yoshitsugu Sugiura for his valuable supervision, Dr. Masahiro Nakajima: Manager, Food Department of Nagoya City Public Health Research Institute, and Dr. Mikiko Uchigashima: HORIBA, Ltd. for valuable advice. We are also grateful to Ms. Hidemi Hatabayashi and Ms. Annette Monigina Nyangaresi for technical support.

References