Critical illness polyneuropathyの診断と治療

園生 雅弘 畑中 裕己

要 旨
敗血症・SIRSと多臓器障害に陥った患者が、重度の軸索性ニューロバーチーを発症することがある。多くの例は重症疾患の回復後に、人工呼吸器離脱困難ないし四肢の弛緩性麻痺があることで気付かれる。重症疾患多発ニューロバーチー（critical illness polyneuropathy; CIP）と命名されたが、同様の状況でミオバーチーによる麻痺を起こすとする報告もある（critical illness myopathy; CIM）。両者は鑑別困難なことも多く、critical illness polyneuromyopathyの統一的用語も提唱されている。全身性ないし高度症型の弛緩性麻痺と腱反射低下消失を呈するが、脳神経は保たれる。重度患者での神経学的評価はしばしば困難なので、診断には電気生理学的検査が有効である。神経伝導検査でCMAP・SNAPの振幅低下、神経電図で不全神経がみられる。特異的治療はないが、厳格な血糖コントロールが発症予防に役立つかもしれない。原疾患を乗り切れば予後は比較的良好で、完全回復例もみられる。

Key words: critical illness polyneuropathy, critical illness myopathy, SIRS, 神経伝導検査

1. 概念
救命集中治療の進歩に伴って重症患者の救命率は向上したが、急性期を乗り切った患者の中に、人工呼吸器からの離脱困難と著明な四肢筋力低下を示す症例があることが気付かれるようになった。1984年Boltonらは、敗血症と多臓器障害からの回復後に人工呼吸器離脱困難と四肢の弛緩性麻痺と腱反射低下を呈した5例を報告した。針筋電図では不全神経がみられ、神経伝導検査は軸索性多発ニューロバーチーを示す所見であった。生存例の症候回復は良好であった。以上より、このような重症疾患（critical illness）患者にみられるニューロバーチーが、新たな疾患概念ではないかという考えを初めて提出した。

その後、彼らは“重症疾患多発ニューロバーチー（critical illness polyneuropathy; CIP）”という疾患名を提唱し、薬剤や代謝・栄養などの要因は明らかでなかったことから、critical illness、すなわち、敗血症と多臓器不全（MOF）という病態そのものが、ニューロバーチーの原因であろうと推測し、今日のCIPの基本的概念がほぼ確立された。

一方、Boltonらの報告に先立って、神経筋接合部遮断薬（NMBAs）やステロイドを使用した喘息重篤などの患者において、同様の急性発症の四肢麻痺を呈するミオバーチーが記載され、病理学的にはミオシンフィラメントの消失が特徴であることが明らかにされた。また同様の原因で、CK上昇と横紋筋融解を来す症例も、acute necrotizing myopathy of intensive careの名で報告された。これらの症例について様々な名称が用いられたが、CIPとの対応からはcritical illness myopathy（CIM）という名称が推奨される。
表1. SIRS（全身性炎症反応症候群）の定義

以下の4項目のうち2つ以上を満たす。
1) 体温>38℃または<36℃
2) 呼吸数>20/分またはPaCO₂<32mmHg
3) 心拍数>90/分
4) 白血球数>12,000/μl, <4000/μl, または枠状核球>10%

（The ACCP/SCCM consensus conference committee: Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644-1655, 1992より引用）

しかし、後述のように、CIMとCIPとの鑑別は、臨床的、電気生理学的、さらには病理的的にもしばしば困難であり、両者の共存例も多いと考えられることから、critical polynuromyopathyとして統一的に扱うべきではないかという考えも提出されている6)。

本稿では、CIPを中心に、CIMについても視野に入れながら、その臨床特徴について述べ、後に自験例とその電気生理学的所見を提示した。

2. 疫学と危険因子

Critical illnessという言葉は、かつては死の危険にさらされたあらゆる病態を意味するものであったが、近年ではより特異的に行血症とそれに合併するMOFの病態を指す用語として用いられる傾向にある6)。さらに、必ずしも感染が基礎になくても、外傷、火傷、膿炎、手術などの原因によっても同様の病態が起こり得ることから、より一般的な用語として、全身性炎症反応症候群(systemic inflammatory response syndrome; SIRS)という概念が近年提唱され、広く用いられるようになった（表1）。

ICUの長期入室患者、あるいは敗血症/SIRS+MOF患者におけるCIP、あるいはCIMも含む神経筋疾患の発症率は高く、一般に50～70%の発症率が報告されている。電気生理学的検査あるいは筋生検によって検討した報告の中には、発症率90～100%とするものまである6)。CIPが発症するとICU滞在・入院期間が延長し、人工呼吸器装着期間も長期化する。

CIPやCIM発症の危険因子としては、敗血症/SIRSやMOFの存在と強く関連していることを多くの報告が確認している6)。MOFスコアや、患者の全般的重症度を評価するスコア（APACHE IIIスコアなど）などの定量的指標の高値が危険因子となることも示されている6)。他、エピネフリン・ノルエピネフリンなどの昇圧薬（ドブタミンは保護的？）、アミノグリコシドなどの薬物や、低アルブミン血症の関与を示唆する報告もあるが、広く認められていない。十分な栄養補給が却ってCIPを誘発・増悪させるという意見も提出されたが、多くの研究者には否定的である。

ステロイドと神経筋接合部遮断薬（NMBAs：バンクロニウム、ベクロニウムなど）は、CIMの原因として歴史的にも重要視されてきたが、CIPについては、大半の研究では関連は示されていない。ミオパチーも含む前向き研究においてさえ、ステロイドやNMBAsが発症に無関係であったとする報告もみられる6)。

高血糖とCIPの関連を示唆する報告は以前にもあったが、近年前向きランダム化対照試験において、厳格な血糖管理（80～110mg/dl）を行うと、180～200mg/dlに保つ古典的な方法と比較して、死亡率などの予後を改善するのみならず、CIPの発症リスクも44% 減らすことが示された6)。このことより、血糖管理のCIP発症予防における重要性が改めて注目されている。

3. 病態と発症機序

CIPの正確な病態と発症機序は現在まだよくわかっていない。

CIPの概念の提唱者であるBoltonは、SIRSにおいて炎症性サイトカインを中心とした体液性反
応や、接着分子を介した細胞成分の凝集などが引き起こされ、これらを通じて微少血管拡張、血管透過性亢進が起こり、神経内膜の浮腫や組織障害を来して、これらによるエネルギー不全から軸索輸送や活動電位生成が障害され、機能障害から組織変化を起こすという説を展開している3)。しかし、微少血管の障害を示唆する十分な病理学的証拠は得られていなかった。

近年、筋組織において、局所的な低レベルの免疫賦活が生じていることを示す報告や、神経内膜の微少血管の血管内皮細胞で、白血球の接着に関与するE-selectinの発現亢進が特異的に生じていることを示す報告などがあり注目される。

一方、CIMにおいては、NMBAsとステロイドの作用が原因と早くから注目されていた。ラットにおいて、脱神経筋線維にステロイドを作用させることでナトリウムチャネルの不活性化が起こり、筋の興奮性が失われることが示されており、CIMの発症機序に筋の興奮性の喪失との関係が想定されている。

4. 臨床症候と一般検査

多くの症例は、様々な原因により、敗血症ないし後述のSIRSと多臓器機能障害を呈し、調節呼吸の元で集中治療を受けた後、退院時期に人工呼吸器からの離脱困難、ないし脳性脱抑制を除くことも後も微少麻痺が存在することによって気付かれる。人工呼吸器からの離脱困難は、呼吸器系や循環器系の障害によっては説明できない。

それ以前の急性期においては、原疾患が重症でありしばしば意識障害があるが、特に敗血症においてはseptic encephalopathyとして知られる脳症と意識障害をほとんどの例が伴うことが多いく、鎮静薬や筋弛緩薬がしばしば用いられていることなどから、神経障害の臨床神経学的評価は容易ではない。電気生理学的手法を用いれば早期の異常検出が可能であり、敗血症性ショック発症の72時間以内、ないしICU入室後2～5日以内にほとんどの例が発症することが前向き研究によって示されている。即ち、臨床的に気付かれるよりももっと早くからニューロパチーが発症している例が多いと推測される。

四肢は弛緩性の麻痺を呈するが、軽症例では、筋力低下は通常近位筋より遠位筋に強く、しばしば筋萎縮を伴う。腱反射は減弱消失するのが通例だが、保たれる例もしばしば認められる。感觉の評価は困難なことが多いが、四肢遠位での触覚検査の低下が示される場合もある。神経機能は比較的よく保たれる。このため、痛み刺激でしかめ面が生ずるにも関わらず、四肢の動きが全く見られないという解離がしばしば見られる。

5. 電気生理学的検査

前述のように、重症疾患患者における神経学的評価はしばしば困難であるため、電気生理学的検査が重要な診断の手段となる。

神経伝導検査（NCS）においては、ほぼ純粋な軸索性ニューロパチーの所見を呈する。即ち、複合筋活動電位（CMAP）、感覚神経活動電位（SNAP）の振幅低下が主たる所見であり、伝導速度の低下や伝導ブロックの所見はみられない。SNAP正常、ないし軽度低下にとどまる例もあり、このような場合には純粋運動ニューロパチー、ミオパチーの鑑別は困難となる。SNAPの振幅低下がなければニューロパチーの証拠と一般には解釈されるが、組織の浮腫のために振幅低下が生ずる可能性もあり、またニューロパチーにミ
オパチャーを合併している可能性も否定することは難しい。Bednarikらは、重症疾患で神経障害を呈した26例について検討し、NCSからは、純粋運動神経像12例、運動と感覚多発ニューロパチー13例、感覚多発ニューロパチーのみが1例であったとし、純粋運動神経像については後述の筋直接刺激法や病理学的検討から主にミオパチーであることを示唆している。

NMBAsの使用、あるいはその効果遅延に伴う神経筋接合部障害による筋力低下の診断には神経反復刺激検査（RNS）が必要となる。

同様に筋電図では、安静時の線維自発電位や陽性筋波などの、所謂脱神経電位が出現することが重要な所見であり、ニューロパチー診断のgold standardとして用いている報告もあるが、これらの安静時活動はミオパチーにおいても認められる所見なので、神経原性か筋原性かの鑑別には役立たない。

随意収縮時活動は、意識障害があると評価が不可能な場合も多い、評価ができた場合も、運動単位電位（motor unit potential；MUP）は急性期なので神経原性としての特徴は必ずしも明らかではない。すなわち低振幅、短持続時間、多相性のMUPが、定量筋電図による検討も含めてしばしば記載されているが、これをもってミオパチーであることがある十分の証拠とすることはできない。動員パターンにおいて、減少動員（reduced interference）の所見が得られる神経原性、弱収縮で多数のMUPが動員される急速動員、または早期動員の所見があれば筋原性の所見と通常みなされる。しかし、stimulating SFEMGによって、運動神経の未梢障害が最初の変化であることを示唆した報告もあり、もしそうならば、MUP形態、動員パターンいずれの面からも筋原性との鑑別是不可能となる。

Richらは、筋を直接電気刺激して得られるCMAP（dmCMAP）と神経刺激によるneCMAPを比較することによって、ニューロパチーとミオパチーが鑑別できるという新しい手法を特写し、ICUで筋力低下が見られた14例にこの手法を適用したところ、11例はミオパチー、2例がニューロパチーであったと報告している。この方法は、ニューロパチーとミオパチーを鑑別するための最も有望な方法かもしれないが、前述のBednarikらの検討では、筋の病理学的所見と直接刺激法の結果とはある程度の対応がみられるものの、完全に一致は得られていない、この方法の有用性についてはさらなる追試と検討が必要であろう。

CIPにおいて臨床的に大きな問題となるのは人工呼吸器からの離脱困難であるが、これの評価のために、横隔膜のCMAPを記録する横隔神経伝導検査や横隔膜の筋電図を行う手法がBoltonらによって導入され、呼吸筋麻痹がニューロパチーであることを証明するための手段として有用であると主張されている。しかし、横隔膜の脱神経が、臨床的な呼吸障害や人工呼吸器装着期間と必ずしも相関しないとする報告もあり、技術的困難さも相まって、その真の有用性についてはさらに検討が必要であろう。

6. 病理学的検査

神経生検では主に急性期の軸索変性の所見がみられ、脱髄や血管炎の所見はみられない。剖検では遠位の神経が強い障害を呈するのにに対し、神経根や近位の神経の障害はより軽いことが示されており、遠位軸索障害（distal axonopathy）であることが示唆される。また、Latronicoらは、電気生理学的にSNAP振幅低下がみられても神経生検では異常がない例があることを示し、このような例は早期に生検が行われた場合に多く、遅れて生検された例の多くは病理学的変化を認めることから、早期には膜電位の障害などの機能障害が先行する可能性を示唆している。

筋生検においては、散在する萎缩線維（小角化線維）など神経原性の所見が見られる。これに加えて、散在する壞死線維から、横紋筋融解
あるいはさらに広汎な壞死（acute necrotizing myopathy）に至るまでの様々な所見。CIMに特徴的と考えられるミオシンフィラメントの消失（thick filament myopathy）などの筋原性と考えられる所見が様々な程度にみられる。生検筋のミオシン／アクチン比を迅速定量する方法がCIMの診断に有用とする報告もあり注目される。また、筋病理所見正常のものや、非特異的なタイプ2線維萎縮の所見のみの場合もみられる。後者は麻痺や低栄養に伴うcachectic myopathyとしてもみられる所見である。

生検筋にみられるのミオバター性変化の少なくとも一部は、神経に伴う二次的変化である可能性、あるいは逆に敗血症の筋萎縮などの通常神経原性と考えられる所見が、実は筋原性変化の現れである可能性を示唆する意見もある。このような問題点はあるせよ、一般には筋生検、ニューロバターかミオバターかを鑑別するための最終的な手段であると理解されている。しかし、その鑑別がたとえできたとしても治療管理方針、予後などにおいて大きな違いがあるわけではないので、ICUで発生した麻痺の全例に、診断目的で筋生検を行う必要性はないというのが今日のほう一致した見方である。

7. 鑑別診断

ICUで四肢呼吸筋力低下を呈する患者においては、様々な鑑別診断を考慮する必要がある。最も重要なことは、ICU入室前に急速に麻痺を来したのか、他の原因でICU入室後に麻痺を来したのかを鑑別することである。ただし、前者であっても非常に急性に疾患が進行したために、事前に十分な評価がされず、原因不明の呼吸不全や肺炎の診断で呼吸管理となり、その後筋力低下に初めて気付かれる場合があるので注意を要する。

ICU入室前から麻痺が生じ、それが原因の呼吸不全などでICU入室となる疾患としては、種々の原因の中高位頸髄病変、筋萎縮性側索硬化症（ALS）、Guillain-Barré症候群（GBS）、ポルフィリアなどのニューロバター、重症筋無力症・有機リン中毒・ポツリヌス中毒などの神経筋接合部疾患、筋炎・神経の原因による横紋筋融解症などの筋疾患などがあげられる。

特に、急性運動性神経症候群（AMAN）あるいは、急性運動性神経症候群（AMY）ニューロバター（AMSAN）などと称される神経筋症候群は、急性麻痺の神経症状のニューロバターの所見を呈する点で、CIPとの異同が問題となり得る。発症がICU入室前という病歴を聞き出すことに加え、NCSで伝導ブロックの所見は筋線維GBSでも見られることで、神経症候群は抗ガンブロシド抗体を伴う例が多いが、CIPでは伴わないことなどが鑑別の参考となる。

ICU入室後に生じた麻痺の場合には、虚血も含む神経疾患、NMBAsによる麻痺、外傷やコンパートメント症候群に伴う神経障害、種々の絞縛・圧迫性ニューロバターなどを除外する。

これらの評価においては、系統的なアプローチが必要であり、神経学的所見による局所診断に始まって、MRIなどの画像診断、電気生理学的検査などを適切に行っていく必要がある。それらによって他の原因が除外されたならば、CIPないしCIM、即ちcritical illness polyneuromyopathyの範囲の可能性を考えて、電気生理学的に評価し、必要があれば筋生検も加えるという手順になる。

8. 予防・治療と予後

敗血症/SIRSとMOFを予防し早期に治療することが、最も有効なCIP/CIMの予防法であろうが、現実には特にMOFを合併した敗血症/SIRSにおける死亡率は高く、通常約半数に達する。CIM発症要因としてのNMBAsとステロイド（静注大量療法）の役割は十分に証明されたわけではないが、これらの不用意な使用は避けるべき
表2 自験例の電気生理学的所見

<table>
<thead>
<tr>
<th>神経伝導検査</th>
<th>MCS</th>
<th>MCV (m/sec)</th>
<th>DL (msec)</th>
<th>CMAP amp (mV. dist¬prox)</th>
<th>SCS</th>
<th>SNAP amp (µV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>入院22日後</td>
<td>Lt median</td>
<td>44</td>
<td>3.4</td>
<td>0.49〜0.45</td>
<td>Lt median</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lt sural</td>
<td>NR</td>
</tr>
<tr>
<td>入院59日後</td>
<td>Lt median</td>
<td>44</td>
<td>3.4</td>
<td>0.39〜0.40</td>
<td>Lt sural</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Lt ulnar</td>
<td>44</td>
<td>2.9</td>
<td>2.7〜2.2〜2.1</td>
<td>NR (&lt;0.02)</td>
<td>NR</td>
</tr>
<tr>
<td>入院242日後</td>
<td>Lt median</td>
<td>51</td>
<td>3.9</td>
<td>2.7〜2.9</td>
<td>Lt median</td>
<td>NR (&lt;0.3)</td>
</tr>
<tr>
<td></td>
<td>Lt ulnar</td>
<td>48</td>
<td>3.4</td>
<td>8.4〜7.9〜7.9</td>
<td>Lt ulnar</td>
<td>NR (&lt;0.3)</td>
</tr>
<tr>
<td></td>
<td>Lt tibial</td>
<td>33</td>
<td>9.1</td>
<td>0.04〜0.05</td>
<td>Lt sural</td>
<td>NR (&lt;0.3)</td>
</tr>
</tbody>
</table>

MCS：運動神経伝導検査，SCS：感覚神経伝導検査，MCV：運動神経伝導速度，DL：遠位潜時，NR：no response

同様針筋電図検査（入院33日後）

<table>
<thead>
<tr>
<th>fibrillation potential</th>
<th>positive sharp wave</th>
<th>recruitment</th>
<th>normal MUPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lt rectus femoris</td>
<td>4 +</td>
<td>4 +</td>
<td>-</td>
</tr>
<tr>
<td>Lt tibialis anterior</td>
<td>3〜4 +</td>
<td>3〜4 +</td>
<td>-</td>
</tr>
<tr>
<td>Lt extensor digitorum communis</td>
<td>4 +</td>
<td>3 +</td>
<td>-</td>
</tr>
<tr>
<td>Lt biceps brachii</td>
<td>2〜3 +</td>
<td>2〜3 +</td>
<td>↓↓</td>
</tr>
</tbody>
</table>

である。

CIPの特異的な治療・予防法は確立されていないが、前述のように血糖値を80〜110mg/dlに厳格に保つインスリン治療がCIPの発症を減らすことが期待される8)。その他、ガンマクロブリン静注療法（IVIg）の効果も検討されており、3例でのパイロット研究では効果はなかったが、敗血症+MOFの発症後直ちにIVIgが用いられた症例では、CIPは発症しなかったとする報告もある。さらなる検討が必要だが、敗血症などでIVIgが適応となる例では積極的に用いてもよいかもしれない。

急性期を乗り切った例については、CIP/CIMの予後は比較的良好なことが強調されている。軽症例では数週、重症例でも数カ月で回復がみられ、完全回復も期待できる。これは、CIPは遠位軸索中心の障害であるため、再生も早期に完成するためと説明されている。一方、1〜2年後の長期予後で見ると、生存例の全例でQOL（quality of life）が大きく障害されていたとする報告もある。

本邦でのCIPの報告はまだ少なく、診断されずに埋もれている症例が多いと推測される。CIP/CIMについての知識は、ICU医やその他重篤患者をみる臨床医にとって不可欠なものである。

自験例

46歳男性。アルコール依存あり。一人暮らし・無職のため入院直前の詳細な病歴不明。2000年2月中旬、自宅アパートで火事になり、火傷で救急搬送。当院ICU入院。気道熱傷疑われ挿管されたが、すく自己抜管。その後一時食事摂取。座位保持可能な程度回復していたが、9日後頃より誤嚥性肺炎を生じ再挿管。状態悪化し呼吸管理となり、心停止→蘇生などのエピソードあり。
この時期、肝機能障害も伴う。16日後頃、全身の著明な筋力低下があるのに気付かれ、神経内科にコンサルトされた。

上下肢MMT（徒手筋力テスト）1～2以下だが、脳神経領域に大きな異常なし、ほとんど身動きできないが強い歯ぎしりがあるのが特徴的であった。四肢腱反射消失、電気生理学的検査（表2）では、著明なCMAF振幅の低下を認め、SNAPはすべて消失、伝導速度低下は振幅低下で説明できる程度で、著明な軸索性ニューロパチーの所見と考えられた。発症約3週後の針筋電図では上下肢に豊富な脱神経を認め、上腕二頭筋以外では随意収縮MUPを認めなかった。当初軸索型Guillain-Barré症候群を疑い血漿吸着も行ったが、抗ガングリオシド抗体陰性、繰り返した脳脊髄液検査でも蛋白上昇はなく、最終的にCIPの診断に達した。神経筋生検は行わなかった。

6月にICUから神経内科へ転科。7月に人工呼吸器を完全に離脱した。半年後の電気生理学的検査では、CMAF振幅はかなり回復していたが、SNAPは相変わらず導出不能であった（表2）。

文献