1. まえがき

アモルファスシリコン（a-Si:H）は太陽電池、パネルディスプレイ、各種センサー等の実用デバイスに活用されるようになってきている。これらのデバイスは近年急速に実用化が進められてきたものであるが、実用デバイスとして評価するとき必ずしも満足する段階に至っていない。問題点は多岐にわたっているけれども、デバイスとして未解決の、しかも重要なもののがデバイスの種々の界面に関するところである。表面条件による依存度が大きいために、解明が遅れているが、これからの問題点である。ここでは電極界面近傍でのa-Si:H膜の状態を、エリアソメトリによるその場測定と、X線光電子分光法を用いて測定した結果について議論し、デバイス等の作成における基礎的資料にしたい。

2. エリアソメトリによる「その場」測定

グロー放電法によるa-Si:H膜の堆積をするときに、膜の初期成長、若しくは膜の堆積状態における基板の影響を調べるのに、その場測定が必要とする。アラスマを通してのグロービングには光を用いるのが唯一のものであり、光の波長が長いために屈折面の同軸による計測手法のエリアソメトリが適している。図1にその構成を示す。光源はGaAs半導体レーザーが用いられている。これはa-Si:Hによる吸収係数が非常に小さい近赤外の領域で屈折率と厚さを同時に決定するようにしたためである。膜厚、屈折率はグラムを使ったソリッドを使った分光光度計で測定した結果である。図2はガラス基板上にa-Si:Hを堆積したときににおける電極界面の検討、図3は薄膜の成長における屈折率と厚さの関係である。30A位のところにおいて屈折率の低下がみられる。パラメータは基板温度である。パルク膜における高温における屈折率の増大は水分の含有率の違いによるものと考えられる。

図3にはa-SiNx：H膜を堆積した後a-Siをその上に堆積した場合を示す。界面近傍でやはり屈折率の低下がみられるが、a-Si
図4. SnO₂(β), ITO(α)上の a-Si:Hの薄膜化率に影響

図5. SnO₂上のa-Si:Hの組成

図6. ITO上のa-Si:Hの組成

図7. XPSによる薄膜スペクトル SnO₂の場合

図8. XPSによる薄膜スペクトル ITOの場合

3. XPSによる測定

図5, 6は界面近傍における薄膜構成組成のa-Si:Hへの拡散もしくはオートドープングによる混入の状況を示す。θA/minのスパーサでスパッタしたときの各厚さでの組成を示す。In及びSnは約200Aの範囲で拡散している。この値は大きな差はない。図7, 8はXPSによる薄膜スペクトルで、これは40Aの厚さのa-Si:HをSnO₂及びITO上に付けた場合のものでパラメーターは光電子検出角度である。ITOの場合にはInOの組成がSnO₂の組成に変わり、薄膜の上端で強い影響があらわれるのに対し、SnO₂ではこの影響は非常に少ない。

4. おわりに

デバイスの性能で、ことに界面の影響を強く受ける受光デバイスでは、電極の作成条件、及び堆積初期における取り扱いに特に注意が必要である。また、堆積初期のその場測定にエリオソメトリの技術が大変有効であることが実証できた。