マレイミド樹脂の最近の進歩

石井 敬一郎*

概要

マレイミド樹脂の硬化物は耐熱性に優れ、先端材料としての期待が大きい。しかし、靭性に弱点がある。最近のマレイミド樹脂の研究は、耐熱性を維持して、靭性を向上させることに重点が置かれている。

改良方法として、芳香族ジアミンまたはジオレフィンによる架橋間の鎖延長と、ゴムまたは熱可塑性樹脂（靭性改良剤）による変性が検討されている。これらに関連する反応の解明、硬化構造と物性、靭性改良剤による相分離構造と物性について、最近の研究動向を紹介する。

1. 緒言

マレイミド樹脂（以下、MI と略記する。）は、耐熱性に優れた熱硬化性樹脂として、多層ブリント配線板、精密機械部品、先端複合材料などに使われている。さらに近年、超音速機の一次構造部材として期待され、MI の高靭性化が急がれている。また、大型コンピュータなどの情報処理機器では、演算速度の高速化が要求され、多層板の低誘電率化が強く望まれている。一方、半導体封止装置の表面実装化に伴い、封止材に対する耐熱衝撃性の向上が要求され、MI の適用が確々と拡がっている。これらに共通して、高耐熱性と高靭性が求められている。

ビスマレイミド（BMI）の硬化物は、架橋密度が高く、耐熱性に優れているが、脆い。これを改良する方法として、架橋間の鎖延長と靭性改良剤が数多く検討されている。

以下、ジアミン類で架橋間の鎖延長をする “アミノ変性 MI (AMI)”, ビニル、アリル化合物などのオレフィン類で架橋間の鎖延長をする “オレフィン変性 MI (OMI)”, ゴム、熱可塑性樹脂などの靭性改良剤による変性について、最近の文献を中心に、その研究動向を紹介する。なお、“シアネート変性 MI”については、他の文献を参照されたい。

2. アミノ変性マレイミド樹脂 (AMI)

BMI の硬化物は、耐熱性に優れているが、脆い。この脆さと作業性（溶解性）を改良するため、芳香族ジアミンによる架橋間の鎖延長が検討された。Rhone-Poulenc 社のケルイミド 601 は、最初に実用化されたものである。主として、多層ブリント配線板、精密機械部品などに使用されている。

しかし、実用化が先行し、反応に関する詳しい報告が少なかった。その後、解明されたものを中
心に紹介する。

2.1 プレポリマー化反応

2.1.1 無溶媒反応

BMIと4,4'-ジアミノフェニルメタン（DDM）とのプレポリマー化反応は、通常、作業性、溶解性などから、アミノ基の約半分が反応した程度で止められている。

生成する樹脂は、[1]～[3]のマイケル反応による付加物と未反応BMIとから成る。
比較的低温（100〜130℃）では、副反応が少なく、マレイミド基の重合物はほとんど生成しない。
高温（150℃以上）では、マイケル反応の他に、(2)のアミド化反応などの副反応が起こる。

2.1.2 溶液反応

J.V.Crivelloは、酢酸触媒下、クレゾール溶媒を用いて、柔軟性のあるポリアスアルトイミドを合成している。
一方、小笠原らは、極性非プロトン性溶媒中で、マイケル反応と同程度のマレイミド基のアミオン重合が起こると報告している。
その中の低分子量重合物には、(4), (5)の環状化合物が含まれると推定している。

プレポリマー化反応に及ぼす溶媒の影響について、関らの結果を表1に示した。

プロトロン性溶媒では、無溶媒反応と同様にマイケル反応だけが起る。反応の速さには、酸解離指数 (PKa) が大きく影響する。

メチルセルロース、メチルエチルケトンは、それ自身が反応に関与している。

非プロトン性極性溶媒 (N,N-ジメチルホルムアミド) では、小笠原らの結果と同様に、マレイミド基の重合反応も起こっている。

2.2 硬化反応

AMI の硬化反応は、通常、マイケル反応とマレイミド基の重合反応とされている。マイケル反応は比較的低温で起こるが、熱重合反応（架橋反応）は200℃以上でないと顕著でない(70)。A.V.Tun-gare らは、150〜225℃におけるマイケル反応と重合の反応速度定数比を定量的に求めている。

マイケル反応型付加物であるアスパルトイミド成分が共存すると、これがマレイミド基のアニュオン重合を促進し、より低温での硬化に寄与する(10)。

また、反応条件によっては、第2級アミンのマレイミド反応(11)、アミド化反応(12)なども確認されている。

関らは硬化反応 (170℃) に及ぼす触媒の影響について検討している。ラジカル触媒では、比較的連鎖の長い重合反応が起こるのに対し、イミダゾール類、トリフェニルホスフィン (TPP) などのアニュオン重合型触媒では、連鎖の短い重合反応が起こる。これは、架橋反応において、前段のマレイミド基が2官能性であるのに対し、後段のマレイミド基は2未反応の官能性であることを示している。しかし、TPP 触媒でも、低温 (60℃) 溶液反応では、高分子量重合体 (Mn : 14,800) が得られる。

Table 1 Effect of solvents on BMI/DDM prepolymerization(6).

<table>
<thead>
<tr>
<th>Solvent</th>
<th>AcOH</th>
<th>m-C</th>
<th>MCS</th>
<th>MEK</th>
<th>DOX</th>
<th>DMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant</td>
<td>6.15</td>
<td>11.8</td>
<td>16.9</td>
<td>18.5</td>
<td>2.24</td>
<td>36.7</td>
</tr>
<tr>
<td>PKa</td>
<td>4.76</td>
<td>10.1</td>
<td>15.0</td>
<td>14.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reaction Temperature (℃)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Reaction Time (min)</td>
<td>5</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Conversion (%)</td>
<td>PMI</td>
<td>API</td>
<td>API</td>
<td>P-A-ME</td>
<td>API</td>
<td>P-MC*</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>89</td>
<td>46</td>
<td>65</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Product</td>
<td>AN</td>
<td>API</td>
<td>API</td>
<td>P-A-ME</td>
<td>API</td>
<td>P-ME*</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>91</td>
<td>40</td>
<td>64</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 1 Effect of solvents on BMI/DDM prepolymerization(6).
2.3 硬化物特性

マレイン酸基は、マイケル反応では1官能性として、熱重合反応（ラジカル重合）では2官能性として作用する。そのため、マレイン酸基が各反応にどのような割合で消費されるかによって、硬化構造（架橋間鎮長、架橋密度など）が変わり、硬化物特性にも影響する。

理想的に反応が進む、[7]におけるモル比（m=BI/MDA）と架橋間のマイケル付加型成分の平均くり返し数（n）との関係は(6)式で示される。

\[m = \frac{n + 1}{n} \] (6)

マイケル付加型成分の分子量 (556) に n (= 1/(m-1)) を掛けた値を架橋間鎮長 (Mc=556/(m-1)) として、m と Mc との関係を図1に示した。T.M.Donellan ら20が動的粘弾性測定 (DMA) から求めた値も一緒に記入した。

Fig. 1 Average molecular weight between cross-links (Mc) as a function of BMI/DDM molar ratio (m)19: 1 : Mc = 556/(m-1), 2a : T.M.Donnellan's estimated values20, (curing condition : 145°C/48h + 220°C/6h). 2b : (220°C/6h).
モル比が大きくなると、架橋間鎖長は短くなる。硬化方法によっても架橋間鎖長が異なる。また、モル比が大きくなる（架橋密度が増加する）と、EP の場合とは異なり、密度が大きくなって、自由体積が減少する。しかし、イミド環が増えるため、吸水率は大きくなる。

運見らは、モル比（$m : 1 \sim 2$）と引張特性との関係を求めた。引張強さと伸び率は、一部重合成分を含むため、モル比が1.2の時、最大となった。しかし、重合成分を含まない（3）式のポリアスパルトイミド（モル比1.0）は、柔軟性に富んでいる。

曲げ特性、破壊靭性に関する稲らの結果を表 2 に示した。

モル比が1.2時、曲げ弾性率は最小となり、それよりモル比が大きくなると、曲げ弾性率が大きくなり、破壊靭性値（臨界応力拡大係数：K_{ic}、臨界歪エネルギー開放率：G_{ic}）は小さくなる。H. D. Stenzenberger らと同様の結果を得ている。

モル比とガラス転移温度（Tg）、プリプレグ間の層間接着力との関係を図 2 に示した。

モル比が大きくなると、Tg は高くなる。しかし、それに相応するポストキュアが必要である。層間接着力は破壊靭性値と同様に小さくなる。

硬ない方法（硬化条件）については、一概に高温（200℃以上）に上げるよりも、重合の起らない低温から段階的に温度を上げて硬化させた方が、より大きい破壊靭性値が得られる。

Table 2 Influence of molar ratio on physical properties at BMI/DDM system.

<table>
<thead>
<tr>
<th>BMI/DDM molar ratio</th>
<th>1.0</th>
<th>1.2</th>
<th>1.5</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural strength (MPa)</td>
<td>164</td>
<td>174</td>
<td>172</td>
<td>183</td>
<td>166</td>
</tr>
<tr>
<td>modulus (GPa)</td>
<td>4.09</td>
<td>3.04</td>
<td>3.48</td>
<td>3.64</td>
<td>3.93</td>
</tr>
<tr>
<td>Deflection at breaking (%)</td>
<td>5.74</td>
<td>11.3</td>
<td>11.2</td>
<td>8.00</td>
<td>5.35</td>
</tr>
<tr>
<td>K_{ic} (MN/m²)</td>
<td>0.99</td>
<td>0.85</td>
<td>0.73</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>G_{ic} (J/m²)</td>
<td>242</td>
<td>166</td>
<td>128</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.273</td>
<td>1.273</td>
<td>1.278</td>
<td>1.287</td>
<td>1.296</td>
</tr>
<tr>
<td>Water absorption (%)</td>
<td>2.21</td>
<td>2.08</td>
<td>2.47</td>
<td>2.62</td>
<td>3.11</td>
</tr>
<tr>
<td>Tg : TMA (℃)</td>
<td>250</td>
<td>242</td>
<td>295</td>
<td>297</td>
<td>316</td>
</tr>
</tbody>
</table>

Curing condition : 175℃/3h+230℃/4h.
炭化水素成分、エーテル結合、フッ素、などの導入が検討されている。

3. オレフィン変性 マレイミド樹脂（OMI）

AMIは固形で、ブリブレーグを作成する時に、沸点溶剤に溶かし、ワニスにして使用する。そのため、硬化中に少量の溶剤が残存し、ポリマーなどの欠陥ができ、十分な性能が得られない。そこで、無溶剤（ホットメルト）型の鍍延剤として、アリル化合物、ニトリル化合物などの低粘度（加熱時）反応性稀釈剤が登場した。

3.1 BMI/アリル化合物系の反応

J. J. King, K. R. Cardunerらは、N-フェニルマレイミド（PMI）とアリル化合物との反応において、DSCから2本の発熱ピーク（130℃、252℃）を観測している。前者は、(7)式のエン反応による発熱ピークであることを確認し、後者は、さらに(8)のディールス・アルダー反応と転位反応、(9)の重合反応（アニオン重合）によると推定している。

数25,40も、PMIと種々のアリル化合物（アリルフェニルエーテル、アリルフェノール類など）との反応について検討している。

PMIとα-アリルフェノール（AP）との反応では、PMI-AP、(PMI)3-APの付加物が生成し、(PMI)2-APは確認されなかった。PMI-APはフェノール性OH基が消失し、第3級アルコールが生成していることから、(10)式のエン→ディールス→アルダー→エン反応ではなく、(11)式のエン→ディールス→アルダー反応が起こると推定している。

PMIとフェーノール性OH基を持たないアリル化合物との反応では、エン反応が起こらず、熱重合
する。

PMI/AP系にラジカル触媒を添加すると、上記のエン反応とラジカル重合が同時に起こる。しかし、イミダゾール類、TPPなどのアニオン重合型触媒を添加すると、170℃、2時間の反応では、PMIのオリゴマーのみが生成し、APは未反応のまま残る。なお、TPP触媒の場合は[6]の5員環化合物が主に生成する。

3.2 BMI/ビニル、プロペニル化合物系の反応

アリアルベンゼン類をアルカリ存在下に加熱すると、異性化してプロペニル化合物が得られる。プロペニル化合物は、マレイミド基とディールス・アルダー反応をして[38, 41]。

H.D.Stenzenbergerら[43, 44]は、BMIとプロペニル化合物との反応が[6], [8]式によって進むと考えている。

ラジカル触媒存在下では、電荷移動錯体を形成して共重合する[43]。

3.3 硬化物特性

J.J.Kingら[36]は、BMIとα、α-ジアリルビスフェノールA (ABP)との反応による硬化物をEP (Ciba-Geigy社: MY720/HT976)と比較し、Tg (280℃)が高く、しかも、G₁がEPの4倍であると報告した。

H.D.Stenzenbergerら[43, 44]は、BMIとオレフィン類（アリアル、ビニル、プロペニル化合物）と
の硬化物特性について検討している。その一部を表3に示した。

アリアル（ABP）、プロペニル（TM123）化合物は、250℃の曲げ特性を維持して、G₁を向上させている。

これらの反応系においてもAMIと同様に、マレイミド基は、エン反応またはディールス・アルダー反応では1官能性として、熱重合反応では2官能性として作用する。

橋ら[45]は、モル比（BMI/ABP: 1.0〜3.0）の硬化物特性に及ぼす影響を検討した。

モル比が大きくなる（架橋間隔長が短くなる）と、AMIと同様に比重が増し、G₁は低下する。しかし、Tgと吸水率はあまり変わらなかった。M.C.Chatthaら[47]も同様の結果を得ている。BMIとABPとの反応では、エン反応の他に、ディールス・アルダー反応も関与し、架橋密度の増加が抑制されるためと考えられている。
Table 3 Mechanical properties of BMI/Olefin resins43,46.

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th>C-79644</th>
<th>C-35345</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Olefin BMI/Olefin weight ratio</td>
<td>TM-123 80/20</td>
<td>TM-123 70/30</td>
</tr>
<tr>
<td>Flexural strength (MPa)</td>
<td>23°C</td>
<td>76</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>250°C</td>
<td>31</td>
<td>65</td>
</tr>
<tr>
<td>Flexural modulus (GPa)</td>
<td>23°C</td>
<td>4.64</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>250°C</td>
<td>3.03</td>
<td>2.66</td>
</tr>
<tr>
<td>G_{1c} (J/m2)</td>
<td></td>
<td>63</td>
<td>191</td>
</tr>
<tr>
<td>T_g : TMA (°C)</td>
<td></td>
<td>>300</td>
<td>266</td>
</tr>
</tbody>
</table>

C-796, C-353 : Technochemie GmbH–Verfahrenstechnik, TM-123 : 4,4'-bis (o-propenylphenoxy) benzophenone, ST : Styrene, DVB : Divinylbenzene, Curing condition : 140°C/4hr + 210°C/6hr + 240°C/5hr.

さらに、低溶融粘度化のため、$[9]^{48}$, $[10]^{49}$ 合物50, イソイミド結合を含む MI51などが開発されている。
4. 韌性改良剤による変性

鎖延長剤による変性（AMI, OMI）だけでは、韌性を大変に向上させることが難しい。そこで、ゴムまたは熱可塑性樹脂などの韌性改良剤が検討されている。

4.1 ゴム変性

A.J.Kinlochらは、BMIをカルボキシ末端アクリロニトリル・プタジエンゴム（CTBN）で変性すると、相分離構造を形成し、破壊エネルギーが著しく向上すると報告した。

武田らは、末端基の異なるアクリロニトリル・プタジエンゴム（CTBN, VTBN, ATBN）で、エーテル結合を有するMI（11）の変性を検討した。

CTBNとMIとのプレリアクション（130℃）では、CTBN中のアリル位の炭素とマレイミド基の二重結合が反応する。

VTBNの場合は、末端のアクリロイルオキシ基とマレイミド基の二重結合が反応し、ATBNの場合は、末端の第2級アミンがマイケル付加反応をする。CTBN量と硬化物特性との関係を図3に示した。

CTBN量が増えると、曲げ強さとG_1cは大きくなる。しかし、曲げ弾性率とTgは低下する。

VTBNの場合は、50phr以上になると曲げ強さも低下する。

CTBN中のアクリロニトリル（AN）量は、硬化物のモルホロジーに影響を与える。AN量が少ない場合は、Tgは向上するが、硬化物はミクロ相分離構造を形成する。AN量が多いうちは、ミクロ相分離構造を形成する。AN量が多い場合は、硬化物はミクロ相分離構造を形成する。AN量の多い場合には、Tgは向上し、G_1cは低下する。

H.D.Stenzenbergerらは、同様にMI（Technochemie社、Compimide353）のCTBN変性を検討した。
J/m²以上の値を得ている。しかし、250°Cの曲げ特性は大体に低下する。

R.P.Chartoffらが50)は、MIと接着性的良いATBNを少量（5phr）添加して、Tgと曲げ弾性率を下げずに、曲げ強さと歪み量が増大すると報告している。

その他、ポリアミドエン57）、シリコーン58）などのゴム変性も検討されている。

4.2 熱可塑性樹脂による変性

ゴム変性では弾性が向上しても、Tgと弾性率が大体に低下する。そこで、EPの場合と同様に、耐熱性の熱可塑性樹脂による変性が検討されている。

H.D.Stenzenbergerら59)は、ポリエチレンスルホン（PES：UCC，Udel1700；Tg190°C）、ポリエチレニミド（PEI：GE，Ultem1000；Tg220°C）、ポリヒドロトイン（PH：Bayer AG，PH10；Tg250°C以上）によるMI（Technochemie社：Conpimide796/TM123）の変性を検討した。曲げ特性と破壊特性の結果を表4に示した。

PEIは相分離構造（逆海塩構造60）を形成し、26％変性で、G_{1c}=841J/m²（未変性：182J/m²）に向上する。しかし、PEIのTgが低いため、250°Cの曲げ特性は低下する。

PESはさらにTgが低いため、177°Cの曲げ特性も劣る。PEI、PESについては、Chen-Ron Linら61)も同様の結果を得ている。

PHはMIと相溶して均一相となる。33％変性で、G_{1c}=1,091J/m²に向上し、250°Cの曲げ特性は未変性MIの値とはほぼ同じである。しかし、溶融粘度が高いためか、PHに関するその後の報告は無い。

モルホロジーと破壊特性に及ぼす各因子の影響についても検討されている。PEI量が0〜20％では海塩構造を形成し、PEIの増加とともにK_{1c}が大きくなる。20〜40％では相転移し、PEIは連続相となる。K_{1c}はほぼ一定の値である。40％以上ではK_{1c}がさらに増大する。しかし、177°Cの曲げ特性が低下する。

熱可塑性樹脂の骨格構造の影響62)については、(12a, b, c)のポリエーテルケトン（PEK：20％変性）を用いて検討している。

(12a), (12c)の場合は共連続相となり、(12b)のPEK(20％)系で検討されている。分子量（Mn）6,000では効果が認められず、30,000では未端官能基（無し、メレミド、アリル）によらず、G_{1c}がPEK(20％)系で検討されている。分子量（Mn）6,000では効果が認められず、30,000では未端官能基（無し、メレミド、アリル）によらず、G_{1c}が向上する。しかし、高い基を持っているため、大体に向上には至らなかった。

S.P.Wikinsonら64)は、BMI/ABP/反応性PES（20％）系について検討している。アミン末端PES（Mn：6,000〜15,800）では、分子量の増加とともにK_{1c}が大きくなる。アミンまたはメレミド末端PES（Mn：12,800）は、非反応性PESに比べ、K_{1c}が1.5倍向上する。

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Mechanical properties of thermoplastic-modified BMI resins55).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastic (%)</td>
<td>PEI</td>
</tr>
<tr>
<td>Flexural Strength (MPa)</td>
<td>23°C</td>
</tr>
<tr>
<td>Flexural modulus (GPa)</td>
<td>23°C</td>
</tr>
<tr>
<td></td>
<td>250°C</td>
</tr>
<tr>
<td></td>
<td>3.24</td>
</tr>
<tr>
<td>K_{1c} (MN/m²)</td>
<td>0.82</td>
</tr>
<tr>
<td>G_{1c} (J/m²)</td>
<td>182</td>
</tr>
</tbody>
</table>

BMI resin：C-796/TM-123 (65/35)，*：at 177°C
Curing condition：190°C/3hr+230°C/10hr.
最近、山本らは、BMI/DDM/PEI（5）、BMI/ABP/PEI（6）系について、相分離速度と硬化反応速度との調整により、相分離構造の制御が可能であることを明らかにした。

その他、BMI/ポリイミド、BMI/ポリベンゾイミダゾールなどが報告されている。

一方、MI の靭性改良剤というよりは、むしろ、反応性オリゴマー自身の硬化物特性も検討されている。

G.D.Lyle ら（69-71）は、（13a, b）のマレイミド末端 PEK の分子量（Mn：2,500～10,000）が熱的特性、引張特性、破壊靭性に及ぼす影響について報告している。

分子量の增加とともに、伸び率とKic が増加する。Mn が10,000 ではKic が3.3×10^6NM^{-3/2} で、ポリカーボネート（3.8×10^6NM^{-3/2}）に近い値が得られている。

S.Jin ら（72-74）は、（14）のマレイミド末端 PES（Mn：600～3,400）について検討している。分子量の増加とともに、Tgは下がる。Mn が3,000以下

の硬化フィルムは脆い。

これらは、今後、2.3で述べた架橋間鎖長、架橋間隔の構造と硬化物特性との関係でまとめられることが期待したい。

5. 結 言

マレイミド樹脂は、エポキシ樹脂に比べ歴史が浅い。エポキシ樹脂でも、近年、各分野の要請に対応するよう、特長のある樹脂の開発が活発に進められている。

従来、マレイミド樹脂は、特定の商品イメージに囚われていたように思われる。今後も、耐熱性で靭性の樹脂の開発事業を進めることを期待する。そのためには、マレイミド樹脂の幅広い技術開発とともに、各分野に適用可能な汎用化への道を聞く努力が必要である。
「熱硬化性樹脂」Vol.14 No.3 (1993)

引用文献
1) 下澤宏，藤枝新樹：第42回熱硬化性樹脂講演討論会要旨集，p.73 (1992).
2) 岳田分，野崎充，緒野浩：高分子論文集，41，635 (1984).
3) 岳田分，岳田分，永井俊也：熱硬化性樹脂，5 23 (1984).

57) 武田信司, 高橋隆雄: 材料技術, 4, 504 (1986).

Review

Recent Development of Maleimide Resins

Keiichiro Ishii*

*Fundamental Research Laboratory, Sumitomo Bakelite Co., Ltd.
(495. Akiba-cho, Totsuka-ku, Yokohama, 245 Japan)

Synopsis

Maleimide resins are expected to be one of advanced materials. Cured bismaleimides have excellent heat resistant properties, but are relatively brittle because of their highly crosslinked structure. Therefore, most of recent studies have been focused on improving their toughness without seriously impairing other important properties. For the effective improvement of toughness, trials have been performed for extending the chain length between crosslinks reacting bismaleimide with diamine or diolefin compounds and for modifying the resins with a toughener such as elastomers or thermoplastics.

In this review, the trend of recent papers is mainly introduced on the clarification of reactions in maleimide resin chemistry and the influence of the cured structure and the morphology of modified resins on physical properties.

(Received February 23, 1993)