名古屋工業技術研究所, 462-8510 名古屋市北区平手町1-1

---一般論文---

ペルフルオロ環状イミンとトリメチル（トリフルオロメチル）シランとの反応

(2001年2月2日受理)

西田雅一*・小野泰蔵・阿部隆

ペルフルオロ環状イミンとしてペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン)(1)およびペルフルオロ(3,4-ジヒドロ-2H-ピロール)(2)を用い, トリメチル(トリフルオロメチル)シラン(3)との反応によるルフルオロ環状イミンの導入を試みた. 等モル量の 3を用いた場合でも, 一置換体のみならず複数のトリフルオロethyl基を有する多置換体が得られた. この際に, 1からは5,5-二置換体が生成したのにに対し, 2からは2,2-二置換体以外にも2,5-二置換体が生成した. この二置換体の収率は溶媒を変えることにより変化した. さらに, 2と3の反応においては, トリフルオロメチル化反応で同時にヘテロ環の二量化反応も進行し, 3種類の二量体が生成していた. ヘテロ環に結合している置換基の影響を調べるために, フッ素の炭素に結合したフッ素原子を2,2,2-トリフルオロエトキシ基で置換した化合物に対して3を反応させた. 無置換のペルフルオロ環状イミンと同様に複数個のトリフルオロメチル基が導入されていたが, 2,2,2-トリフルオロエトキシ基の脱離-付加反応も同時に行っていた. 一方, ピロリジン環の二量化は置換基の導入により阻害されることがわかった.

【総 言】

ペルフルオロ環状イミン類は含窒素ペルフルオロ化合物の合成において重要な出発原料であるが, ピリジンの電解フッ素化により容易に合成可能なペルフルオロ(1アザ1シクロヘキセン)を除いては, それほど多くの研究はされていなかった. 著者らはこれまでに五員環から七員環までの一つあるいは二つのヘテロ原子を含むペルフルオロ環状イミンの簡便な合成法を開発し, ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン)(1)に対するフッ素イオンを用いるポリフルオロアルキル化反応およびポリフルオロアルコキシ化反応について報告を行った1), ペルフルオロ(3,4-ジヒドロ-2H-ピロール)(2)に対してアルデヒドの反応を行うことにより, ヘテロ環の種類により生成体の種類が異なることを報告した2). 1および2に対する3を用いた場合, 一置換体のみならず複数置換体が得られていたが, ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン)(1)に対して3を用いた場合では, 一置換体のみならず複数置換体が得られることが明らかにされた3). さらに, ペルフルオロ(3,4-ジヒドロ-2H-ピロール)(2)に対して3を用いた場合では, 一置換体のみならず複数置換体が得られていることが報告されている4). これにより, ペルフルオロ環状イミン類は含窒素ペルフルオロ化合物の合成において重要な出発原料であることが示唆されている.

【実 験】

2.1 試料

ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン)(1)およびペルフルオロ(3,4-ジヒドロ-2H-ピロール)(2)はそれぞれ対応する
ペルフルオロカーポン酸カリウム塩の熱分解により合成し、真空圧を用いた蒸留を繰り返して得た、純度95％以上のものを用いた。3-[(2,2-ジヒドロ-2H-1,4-オキサジン) (p)および5-[(2,2-ジヒドロ-2H-1,4-オキサジン) (q)および5-[(2,2-ジヒドロ-2H-1,4-オキサジン) (r)は、それぞれ1および2をテトラジン中、ペルフルオロ酸を触媒として用いた、トリメチル(2,2-ジヒドロ-2H-1,4-オキサジン)から反応することにより得た。

トリメチル(2,2-ジヒドロ-2H-1,4-オキサジン)はOakwood Products社製のものを用いた。この化合物は、酸素と反応させて得た、トリメチル(2,2-ジヒドロ-2H-1,4-オキサジン)から反応することにより得た。

2.2 ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (1)とトリメチル(2,2-ジヒドロ-2H-1,4-オキサジン) (3)の反応

典型的な反応として、テトラジン中の1と3量を3と反応させた。グローブボックス内で0.036 g (0.39 mmol)のフッ化カーポン酸をテフロン製コック付きの50 mLフラスコに採取し、このフッ化カーポン酸を真空圧で接合させた後、90 °Cで加熱することで、フッ化カーポン酸を十分に乾燥させた後、アルゴンガスを受けて乾燥したテトラジンを5 mL加えた。ペルフルオロ酸を液体窒素で冷却した後、真空圧を用いて、1 (0.43 g, 1.9 mmol)および3 (0.28 g, 2.0 mmol)を導入した。反応混合物を0 °Cで1時間放置し、続いて室温で20時間放置し、無色透明の溶液の生成を確認して分離して行った。

亜塩素を用いたラジカルにより、液体窒素で冷却したラジカルにペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (6)、ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (7)、ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (8)、および原料1を含む透明な液体を得た。この液体について、-20、-50、-78、-110 °Cに冷却したラジカルを接続した真空圧を用いて分離を試み、-56、-78、-110 °Cのラジカルに透明の液体を得たが、これらは2種類あるいは3種類の化合物から成る液化物であった。一部の化合物としての精製が困難であったので、化合物9 - 12の収率についてはGC-F-NMRにより、化合物13 - 15の収率はGCにより決定した。化合物9および13については過去の報告で合成した標準物質との比較で、その他の化合物についてはGC、GC-MS、およびF-NMRから構造を決定した。

7: F-NMR (CDCl3): δ = -51.1 (br. s, 1F, 3-F)。-71.4 (t, J = 11.2 Hz, 6F, 5-F), -76.0 (m, 2F, 6-F)。-76.6 (br. d, J = 22.3 Hz, 2F, 2-F)。GC-MS (EL 70 eV, m/z) : 295 (M+14), 245 (M+1), 167 (C8F18N2, 10), 76 (C8F14N, 69), 69 (CF3, 100)。

8: F-NMR (CDCl3): δ = -69.1 (t, J = 8.6 Hz, 3F, 3-F)。-70.2 (t, J = 10.4 Hz, 6F, 5-F)。-71.6 (m, 2F, 6-F)。GC-MS (EL 70 eV, m/z) : 314 (M+15), 295 (M+14), 286 (C8F18N2, 28), 131 (C8F14N, 89), 69 (CF3, 100)。

2.3 ペルフルオロ(3,4-ジヒドロ-2H-ピロール) (2)とトリメチル(2,2-ジヒドロ-2H-1,4-オキサジン) (3)の反応

典型的な反応として、テトラジン中の2と3を3倍量を用いた反応について述べる。

2.2 で述べた方法で0.036 g (0.39 mmol)のフッ化カーポン酸をテフロン製コック付きの50 mLフラスコに採取し、十分に乾燥させた後、アルゴンガスを用いてテトラジンを5 mLを用いた。テトラジンの乾燥を2 (0.43 g, 1.9 mmol)および3 (0.28 g, 2.0 mmol)を導入した。反応混合物を0 °Cで1時間放置し、続いて室温で20時間放置すると、無色透明の溶液の生成を確認し2層になった。

亜塩素を用いたラジカルにより、液体窒素で冷凍したラジカルにペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (9)、ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (10)、ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (11)、ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (12)、ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (13)、ペルフルオロ(5,6-ジヒドロ-2H-1,4-オキサジン) (14)、およびペルフルオロ(2-ジメチル-6,8-オキサジン) (15)を含む透明な液体を得た。この液体について、-20、-50、-78、-110 °Cに冷却したラジカルを接続した真空圧を用いて分離を試みた。トリメチルオキサジンを用いて9 - 12 - 12の収率についてはF-NMRにより、化合物13 - 15の収率はGCにより決定した。化合物9および13については過去の報告で合成した標準物質との比較で、その他の化合物についてはGC、GC-MS、およびF-NMRから構造を決定した。
N°, 14), 169 (C\(\text{F}_3\)N\(^+\)), 8, 150 (C\(\text{F}_3\)N\(^+\)), 8, 145 (C\(\text{F}_3\)N\(^+\)), 17), 131 (C\(\text{F}_3\))\(^2\), 32, 119 (C\(\text{F}_3\))\(^2\), 19), 114 (C\(\text{F}_3\))\(^2\), 6), 112 (C\(\text{F}_3\))\(^2\), 7), 100 (C\(\text{F}_3\))\(^+\)), 93 (C\(\text{F}_3\)), 8), 76 (C\(\text{F}_3\)N\(^+\)), 27), 69 (C\(\text{F}_3\)), 85).

15: \(^{19}\text{F-NMR}\) (CDCl\(_3\)): \(\delta = -70.5\) (m, 6F, 2-CF\(_3\)), -93.6 (s, 1F, 5F), -115.0 (br s, 2F, 3F), -122.1 (m, 2F, 4F), -133.9 (br s, 3F, 4F, 6F); GC-MS (EI, 70 eV, m/z): 490 (M, 9), 473 (M-C\(\text{F}_3\))\(^+\), 321, 276, 77 (C\(\text{F}_3\)N\(^+\)), 11), 276 (C\(\text{F}_3\)N\(^+\)), 19), 226 (C\(\text{F}_3\)N\(^+\)), 21), 211 (C\(\text{F}_3\)N\(^+\)), 12), 190 (C\(\text{F}_3\)N\(^+\)), 81, 181 (C\(\text{F}_3\)), 8), 176 (C\(\text{F}_3\)N\(^+\)), 6), 145 (C\(\text{F}_3\)N\(^+\)), 9), 131 (C\(\text{F}_3\)), 21, 119 (C\(\text{F}_3\)), 12), 112 (C\(\text{F}_3\)), 9), 100 (C\(\text{F}_3\)N\(^+\)), 61), 93 (C\(\text{F}_3\)), 10), 76 (C\(\text{F}_3\)), 13), 69 (CF\(_3\)), 100).

2.4 3-(2.2.2-トリフルオロエチル)プロピルフルオロ(5.6-ジヒドロフルオロ)4,4-オキソニン(4)とトリフルオロメチルジサイラン(3)の反応

2.2 で述べた方法で0.018g (0.33mmol)のフッ化アリルトリフルオロメチルジホスフィンオキシドをテフロン製フック付きの50mL丸底フラスコに加え、十分に
乾燥した後、アルゴン窒素気下で溶媒のテトラブリム5mLを、
真空ラインを用いて4 (0.21g, 0.72mmol) 1および 3 (0.13g, 0.75mmol) を導入した。反応混合物を30℃で1時間、続いて室温で
20時間かき混ぜると、うす黄色の懸濁液となっていた。

丸底フラスコを0℃に冷却し減圧蒸留することにより、液
体窒素で冷却したトリップル化合物8、3.5-ビス(トリフルオロメチル)5-[(2.2.2-トリフルオロエチル)プロピルフルオロ(5.6-ジヒドロフルオロ)1,4-オキソニン]、3.5-ビス[(2.2.2-トリフルオロエチル)プロピルフルオロ(5.6-ジヒドロフルオロ)1,4-オキソニン]、および原料の4を含む透明な液体を得
た。さらに、残留物を50℃に加熱し、さらに減圧蒸留することに
なり、液体窒素で冷却したトリップル化合物4を、14および
17を含む透明な液体を得た。これらの液体についてそれぞれ,
-20、-50、-70、-110℃に冷却したトリップル化合物を、真空ライン
を用いて分離を試み、-20、-50、-70℃のトリップルに透明
の液体を得た、いずれの露出物と2種類以上の化合物から成
る単一の化合物としての存在が確認されたので、化合物
16および17の収率はGCにより決定した。化合物
16および17については、GC-MS、\(^{19}\text{F-NMR}\)および\(^{31}\text{P-NMR}\)から構造を決定した。

16: \(^{19}\text{F-NMR}\) (CDCl\(_3\)): \(\delta = -4.42\) (q, J = 7.1 Hz, 5-OCH\(_3\)CF\(_3\)), -68.3 (AB, J = 194 Hz, 1F, 2F) -109.4 (AB, J = 171 Hz, 3F, 3-CF\(_3\)), -74.4 (AB, J = 171 Hz, 3F, 1F, 2F), -75.6 (J, J = 7.1 Hz, 3F, 5-OCH\(_3\)CF\(_3\)), -76.6 (m, 3F, 5-CF\(_3\)), -81.2 (AB, J = 158 Hz, 1F, 6F), -67.0 (J, J = 158 Hz, 1F, 6F); GC-MS (EI, 70 eV, m/z): 372 (M-C\(\text{F}_3\))\(^+\), 2, 344 (M-C\(\text{F}_3\)), 2), 325 (M-C\(\text{F}_3\)), 8), 256 (C\(\text{F}_3\)N\(^+\)), 20), 149 (C\(\text{F}_3\)N\(^+\)), 12, 83 (C\(\text{F}_3\)), 100), 69 (C\(\text{F}_3\)), 71).

17: \(^{19}\text{F-NMR}\) (CDCl\(_3\)): \(\delta = -4.41\) (q, J = 8.5 Hz, 2H, 3-OCH\(_3\)CF\(_3\)), 4.23 (q, J = 6.8 Hz, 2H, 5-OCH\(_3\)CF\(_3\)); \(^{31}\text{P-NMR}\) (CDCl\(_3\)): \(\delta = -70.2\) (AB, J = 172 Hz, 1F, 2F), -73.9 (J, J = 6.8 Hz, 3F, 5-
OCH\(_3\)CF\(_3\)), -75.5 (J, J = 8.5 Hz, 3F, 3-OCH\(_3\)CF\(_3\)), -78.9 (m, 3F, 5-CF\(_3\)), -78.9 (AB, J = 172 Hz, 1F, 2F), -80.7 (AB, J = 158 Hz, 1F, 6F), -88.7 (AB, J = 158 Hz, 1F, 6F); GC-MS (EI, 70 eV, m/z): 402 (M, 5), 374 (M-C\(\text{F}_3\))\(^-\), 4, 355 (M-C\(\text{F}_3\))\(^-\), 28, 352 (M-C\(\text{F}_3\))\(^-\), 14, 222 (C\(\text{F}_3\)O\(_3\)), 10), 149 (C\(\text{F}_3\)O\(_3\)), 26, 146 (C\(\text{F}_3\)H\(_2\)O\(_2\)), 14, 273 (C\(\text{F}_3\)H\(_2\)N\(^+\)), 83 (C\(\text{F}_3\)H\(_2\)N\(^+\)), 100), 69 (C\(\text{F}_3\))\(^+\), 35).

2.5 (2.2.2-トリフルオロエチル)プロピルフルオロ(3,4-ジヒドロ-2H-ピロリン(3)とトリフルオロメチルジシアラン(3)の反応

2.2 で述べた方法で0.018g (0.33mmol)のフッ化アリルトリフルオロメチルジホスフィンオキシドをテフロン製フック付きの50mL丸底フラスコに加え、十分に
乾燥した後、アルゴン窒素気下で溶媒のテトラブリム5mLを、
真空ラインを用いて5 (0.44 g, 1.6 mmol)および3 (0.23 g, 1.6 mmol)を導入した。反応混合物を30℃で1時間、続いて室温で20時間かき混ぜると、うす黄色の懸濁液となっていた。

丸底フラスコを0℃に冷却し、減圧蒸留することにより、液体
窒素で冷却したトリップル化合物10。化合物
12: 5- [2.2.2-トリフルオロエチル] -2-(トリフルオロメチル)フルオロ(3,4-
ジヒドロ-2H-ピロリン(18), 25-ビス(トリフルオロメチル)2-
(2.2.2-トリフルオロエチル)フルオロ(3,4-ジヒドロ-2H-
ピロリン(19), 2,5-ビス(2.2.2-トリフルオロエチル)-2-(ト
リフルオロメチル)フルオロ(3,4-ジヒドロ-2H-ピロリン(20).

19および20の収率はGCにより決定した。化合物
16, 18, および20については、GC-MS、\(^{19}\text{F-NMR}\)および\(^{31}\text{P-NMR}\)から
構造を決定した。
3 結果と考察

化合物 1 と 3 の反応では、トリメチルシランと 1 との反応と同様の傾向を示し、トリフルオロメチル導体 6-8 から成る混合物が得られた（Table 1）。二置換体については 3,5-ジ置換体と 5,5-ジ置換体が可能であったが、実際には 5,5-ジ置換体のみが得られた。化合物 1 に対して等モル量の 3 を用いた場合でも 3 分の 1 の原料が回収されていたが、これはトリメチル（ペンタフルオロフェニル）シランと 1 との反応で出発原料の 1 がほとんど消費されていたことと対照的であった（Table 1, entry 1）。一方、3 倍モル量の 3 を用いた場合には原料 1 はすべて消費されていたが、二置換体 7、三置換体 8 の収率は大きく改善されることになった（Table 1, entry 2）。使用する 3 のモル数に関係なく、二置換体 7、三置換体 8 が生成するので、一置換体 6 についてトリフルオロメチル基の導入による反応性の差はほとんどないと判断された。50%以上の 3 未反応のまま回収されているにもかかわらず、過剰量の 3 でさらに一置換体 6 がトリフルオロメチル化されなかった理由は現在のところ不明である。溶媒としてベンゾニトリルを用いて反応を行うと、等モル量の 3 を用いた場合にはテトラグリムを用いた場合と大きな違いはないが、3 倍モル量の 3 を用いた場合には二置換体 7 と三置換体 8 のみが得られ、一置換体 6 を得ることができなかった（Table 1, entry 3, 4）。

続く、化合物 2 と 3 との反応では、ピロリン環の二量化反応も同時に進行し、トリフルオロメチル導体 9-12 および二置換体 13-15 の混合物となった（Table 2）。化合物 2 に対して等モル量の 3 を用いた場合には原料はすべて消費されていた。

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Reaction of perfluoro(5,6-dihydro-2H-oxazine) with trimethyl(trifluoromethyl)silane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>3 (mol. am.)</td>
</tr>
<tr>
<td>1</td>
<td>1.01</td>
</tr>
<tr>
<td>2</td>
<td>3.01</td>
</tr>
<tr>
<td>3</td>
<td>1.02</td>
</tr>
<tr>
<td>4</td>
<td>3.03</td>
</tr>
</tbody>
</table>

a) Determined by 19F-NMR.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Reaction of perfluoro(3,4-dihydro-2H-pyrrrole) with trimethyl(trifluoromethyl)silane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>3 (mol. am.)</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>3.02</td>
</tr>
<tr>
<td>3</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>3.02</td>
</tr>
</tbody>
</table>

a) The starting material 2 was completely consumed.

b) Determined by 19F-NMR otherwise noted.
c) Determined by GC.
285

Scheme 1

孵化、2001, No. 5 田野・小野・阿部: ペルフルオ環状イミンとトリメチル(トリフルオロメチル)シランとの反応

が、一方、3 倍モルの 3 を用いた場合には、化合物 1 と同じよう、50％以上 3 が未反応のまま回収されていた。また、トリメチル(ペンタフルオロフェニル)シランと 2 との反応ではほとんどの二重反応のみが進行したのに対して、今回の反応ではトリフルオアルキル化と二量化反応がほぼ同様に進行していた。これは、トリメチルペンタフルオロフェニルシランの場合、2 ヘフッ化物イオンの付加が優先的に起こっていたのに対し、3 との反応の結果、2 と 3 の双方に対してフッ化物イオンの攻撃はほぼ等しく起こっていたためである。一方、二置換体の構造に関して言えば、1 は 5,5-二置換体 7 のみを与えたのに対して、2 では 2,2-二置換体 11 以外にも 2,5-二置換体 10 をも与えた。この二つの二重反応の収率は反応溶媒の影響を受け、テトラグリュムでは化合物 10 がベンゾトリルでは化合物 11 がそれぞれ優位に生成していた。

化合物 12 と 3 との反応により四置換体であるペルフルオロ(2,2,5,5-テトラメチルピロリジン)カリウム(21)が生成している可能性がある。そこで、減圧蒸留を行い生成物 9-15 を経た後のテトラグリュム溶液に、臭素を加えて50℃で20時間反応させた。チオ硫酸ナトリウム水溶液で処理を行い、クロロホルムにより抽出を行い、この抽出液についてGC-MSによる分析を行った。その結果、化合物 21 も臭素や水との反応によって得られるフッ素モノペルフルオロ(2,2,5,5-テトラメチルピロリジン)(22)を 1-ヒドロペルフルオロ(2,2,5,5-テトラメチルピロリジン)(23)は検出されず、大部分が化合物 2 の加水分解によって得られる 1-ヒドロペルフルオロ(ピロリジン-2-オン)(24)となっていた。このことから、減圧蒸留後のテトラグリュム溶液には、四置換誘導体 21 ではなく、ペルフルオロ(ピロリジン)アニオンが未反応のまま存在していると推測される。

ペルフルオ環状イミンとトリメチル(トリフルオロメチル)シラン(3)の反応についても、前報のトリメチルペンタフルオロフェニルシランとの反応で示したような付加-脱離(Ad-E)機構による二量化反応によって進行したと考えられるが、トリフルオロメチル誘導体 10 および二量化体 14 については特に Scheme 1 で示す反応機序で進行すると考えられる。すなわち、ピロリジン環の場合はモルホリシン環と比較してフッ化物イオンの付加が容易に起こりやすいために、Ad-E 機構で生成した一置換体 9 が平衡により位置異性体 2-(トリフルオメチル)ペルフルオロ(3,4-ジヒドロ-2F-ピロール)(25)へ異性化することが可能である。この位置異性体 25 の反応性が高いために、これが 3 と反応することにより二置換体 10 が、ピロリジンアニオンと反応することにより二量化体 14 が生成したと考えられた。なお、ベンゾトリル中で二置換体 10 の収率が低下し、代わりに二量化体 14 の収率が増加しているのは、ベンゾトリルに対するフッ化カリウムの溶解度が低いため、一置換体 9 がフッ化物イオンにより位置異性体 25 へ異性化することが抑制されているためであると考えられた。一方、モルホリシンを持つ化合物 1 と 3 との反応におい
て、一置換体やニ置換体について位置異性体の生成が見られないのは、いずれの溶媒を用いた場合についても、一置換体とフッ化物イオンとの反応性が低く、フッ化物イオンとの反応が進行する前にトリフルオロメチルアニオンとの反応が進行し、二置換体が生成するためと考えられた。

ここで、置換基の導入による反応の影響をさらに調べるため、イミノ結合のフッ素を2,2,2-トリフォルオエトキシ基で置換した化合物4および5について3と反応を行った。化合物4と3の反応では、三置換体および17が得られた（Scheme 2）。この際、化合物4が反応でまず生成する5-（2,2,2-トリフルオロエトキシ）-5-（トリフルオロメチル）ペルフルオロ（5,6-ジヒドロ-2H-1,4-オキサジン）(26)は得られなかった。一方、かなり多くの4が回収されたことから、化合物4に対する反応性はそれほど高くはないが、いったんポリオル環へトリフルオロメチル基が導入されて2,5-ニ置換体26になるとさらにトリフルオロメチル化が促進され、三置換体16まで反応が進行すると考えられた。トリフルオロメチル化に当たっては、フッ素原子の脱離と同様に2,2,2-トリフルオロエトキシ基の脱離も同様に起こることが、化合物6が生成したことも考えられた。この脱離した2,2,2-トリフルオロエトキシ基の付加もトリフルオロメチル化と同様に進行し、化合物17が生成されたものと考えられた。

化合物5と3の反応においても、化合物4と3の反応と同様に、三つのニ置換体12, 19, および20が得られたが、さらに2,5-ニ置換体として、トリフルオロメチル基を二つ有するニ置換体10とトリフルオロメチル基と2,2,2-トリフルオロエトキシ基を一つずつ持つニ置換体18が生成していた（Scheme 3）。これらニ置換体は前章の配向性から判断し、Scheme 4に示すように、2,2,2-トリフルオロエトキシ基の脱離によって生成したものであると考えられた。この際にも、化合物5と3による反応でまず生成する2-（2,2,2-トリフルオロエトキシ）-2-（トリフルオロメチル）ペルフルオロ（3,4-ジヒドロ-2フ-ピリロール）(27)は得られなかった。一方、ニ置換体がビープーが全く検出されていなかったことにより、ピリジン環へ2,2,2-トリフルオロエトキシ基を導入することで、ニ置換反応が阻害されることが確認された。一方、化合物2と3の反応で得られたニ置換体はいずれもペルフルオロ（ピロリジド）イオンのイミド結合への攻撃により生成したものであり、ペルフルオロ（2-メチルピロリジド）イオンなどのトリフルオメチル誘導体のイミド結合への攻撃は行われていない（Scheme 1）。これらの結果から、ニ置換反応の起こりにくさの原因はピロリジン環への置換基の導入による、立体的または電子的影響であると考えられた。

4. 結論

ペルフルオロ環状イミンとトリメチル（トリフルオメチル）シランとの反応は、トリメチルペンタフルオロシランとの反応と同様に、ヘテロ環へのフッ素イオンの反応性の大きさとその平衡反応の寄与に大きく影響され、ペロフロ化の種類、
置換基の有無、および反応溶媒の種類によって、二量化反応の有無や置換基の配向性など、生成物の種類やその収率が大きく影響を受けることがわかった。

3) 西田雅一, 小野泰蔵, 阿部・隆, 日化, 2000, 817.
Reactions of Alicyclic Perfluoroimines with Trimethyl(trifluoromethyl)silane

Masakazu NISHIDA, Taizo ONO and Takashi ABE
National Industrial Research Institute of Nagoya; 1-1 Hirate-cho, Kita-ku, Nagoya-shi 462-8510 Japan

Trifluoromethylation of the alicyclic perfluoroimines, perfluoro(5,6-dihydro-2H-1,4-oxazine) (1) and perfluoro(3,4-dihydro-2H-pyrrole) (2), was achieved by using trimethyl(trifluoromethyl)silane (3). Successive trifluoromethylations occurred even when an equimolar amount of 3 was used in both cases so that mono-, di-, and tri-substituted products were formed. In addition to this successive trifluoromethylation, the dimer formation was accompanied in the case of 2, giving three dimers with or without trifluoromethyl substituents. The reaction mechanism and the solvent effect on the orientation of the trifluoromethylation and the product distribution were discussed. The influence of the substitution of the fluorine bonded to imidoyl carbon of 1 and 2 for a 2,2,2-trifluoroethoxy group on the trifluoromethylation reaction was also investigated.