澱粉糊研究（第四報） 澱粉糊の毛管上昇に
於ける上昇距離、時間及び濃度の関係

（大正二年四月四日工業化学会第二十九年会に於て講演）

工学士 方野 守三

第一 緒 言

澱粉に対する糊の浸透は染織工業に於て仕上糊、捺染糊等として澱粉糊を使用するにあたり最
重要なる條件の一にして此現象を明かならしむる事は此方面の研究の根本をなすものと云はざる
可からず而して下に述べるが如く浸透を説明せずが為めには糊の毛管上昇を明かならしむるを必
要とする又現今糊の試験法は甚だ不完全にして毛管上昇試験法は技術上有益なる方法たらる可能性ある
を以て著者は先づ綿布、紬布及び紙に対する各種澱粉糊の毛管上昇距離、時間及び濃度の関係
に就て研究せるが故に其概要を報告せんとす

第二 実験試料

澱粉はすべて本研究第一報及び第二報に於て用いたものと同様にして綿布は市販の金巾の無水
量に対し 5％の洗濯曹達、40 倍の水を加へ 3 時間 95℃に保ちたる後充分水洗し室內にて自然乾
燥せるもの、紬布は市販の細二重の無水重量に対し 20 ％の石鹸、40 倍の水を加へ 1 時間 95℃
に保ち水洗せる後 5 ％の重曹、40 倍の水にて 95℃に 1 時間保ちよく水洗して室內にて自然乾
燥せるもの、紙紙は市販品にして此等の綿布、紬布、紙紙を幅 10 mm の長き矩形となせるもの
を使用せるものにして此等の一端 10 mm を 20℃の水に入れ之を垂直に保つ時水面より水の上
昇する距離は第一表の如し

<table>
<thead>
<tr>
<th>時間(分)</th>
<th>第一表</th>
<th>上昇距離 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>綿布</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>紬布</td>
<td>105</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>紙紙</td>
<td>41</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>紙紙</td>
<td>69</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>142</td>
</tr>
</tbody>
</table>

第三 実験之部

（1）上昇距離と濃度の関係

本研究第一報と同様なる條件の下に述べる澱粉糊を 20℃の恒温槽中に保ち 20 分間の後この
糊の中に紙紙、綿布、紬布の一端を 10 mm 入れて垂直に保ち 20 分の後に糊の上昇に依って浸
れる距離を測定し第二表中に實及記せる實測値を得たり紙紙に対するものは第一図に示すが如し
液体の毛管上昇に関してはルーカス氏 (R. Lucas, *Koll. Z.*, 1918, 23, 15)がポアスの第 (Poisson) の法则より誘導せる $h^2 = w \cdot r / 2 \eta$ なる式あり兹に hは上昇距離, w は表面張力, η は粘度, rは毛管の半径, t は時間なり然に著者は本研究第2報（本誌大正三年 1212 頁）に於て各種着粉糊の粘度, 濃度の關係がアーレ＝ウス氏の式

$$\log \frac{\eta}{\eta_0} = \theta = \frac{100 \cdot p}{100 - (n + 1)p}$$

なる式に依りて充分に表現させられ し事を知りり η 及び η_0 は夫々糊及び水の粘度, p は濃度, θ 及び n は恒数なり依って以上の二式より次の關係を得べし。
第二編

$$\log h = \frac{1}{2} \log \frac{w_r t}{2\eta_0} - \frac{\theta_2 P}{1 - n + 1/100p} \quad (1)$$

濁粉側の表面張力はズロビッキ氏（Zlobicki, Bull. d. l'Acad. d. Cracov, 1906, 488）の研究に
依れば水の表面張力と殆と同様に若くも共濃度に依る変化は粘度の変化の大なるに比して省略し得
るが故に上昇時間 t が一定なる場合には上昇距離と濃度との関係は $\kappa_1, \alpha_1, \beta_1$ を恒数とすれば
次式を以て表現せらるべし

$$\log h = \kappa_1 - \frac{\beta_1 P}{1 - \alpha_1 p} \quad (2)$$

実測値が (2) 式に依りて表現せらるや否やを試みる為めには三つの濃度 p_1, p_2 及び p_3 に於
て実測せる上昇距離を h_1, h_2 及び h_3 とすれば代数的に下の式を得

$$\alpha_1 = \frac{(p_3 - p_1)(p_2 \log h_1 - p_1 \log h_2) - (p_2 - p_1)(p_3 \log h_1 - p_2 \log h_3)}{p_3 p_2 (p_1 - p_2)(\log h_2 - \log h_3)}$$

$$\kappa_1 = \frac{p_2 \log h_1 - p_1 \log h_2 + \alpha_1 p_2 (\log h_2 - \log h_3)}{p_2 - p_1}$$

$$\beta_1 = \frac{(k_1 - \log h_2)(1 + \alpha_1 p_1)}{p_1}$$

此の三式に依りて恒数を求めて各濃度に於ける上昇距離を計算し實測値と比較する事を得べし

或は $(logh - k_1)/p - \alpha_1 (logh - k_1) + \beta_1 = 0$ なる関係あるを以て $(logh - k_1)/p$ 及び $(logh - k_1)$ を直
交軸標上にとりて略直線上にある如き k_1 をさがせば図上より直ちに α_1, β_1 を算出し得べ
く k_1 は濃度零に於ける上昇距離の實測値の對数と近かる可きを以て之を知ることを得べし

この三式の方法に依りて得せりの恒数は第三表に示すが知く此等の恒数依りて計算せる
ものが第二表に計と記せる計算値にして實験誤差の範囲内に於て實測値と一致するものと考へら

<table>
<thead>
<tr>
<th>第三表</th>
<th>木棉</th>
<th>純綿</th>
<th>可溶性繊素</th>
</tr>
</thead>
<tbody>
<tr>
<td>間</td>
<td>k_1</td>
<td>α_1</td>
<td>β_1</td>
</tr>
<tr>
<td>鈴木</td>
<td>2.095</td>
<td>-0.070</td>
<td>0.179</td>
</tr>
<tr>
<td>玉砂</td>
<td>2.230</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>甘草</td>
<td>2.197</td>
<td>-0.107</td>
<td>0.213</td>
</tr>
<tr>
<td>小麦</td>
<td>2.113</td>
<td>-0.147</td>
<td>0.234</td>
</tr>
<tr>
<td>シュテスキー</td>
<td>2.180</td>
<td>-0.782</td>
<td>0.310</td>
</tr>
</tbody>
</table>

第三表に依れば k_1 は濁粉の種類に關せず同一種類の毛管に於ては略一定の値を得るは (1) 及
び (2) 式の理論に合致せりも α_1 及び β_1 是同一種類の濁粉に在りては毛管の種類に関せず一定
なる可に多くの場合に一定ならすかた α_1 は理論上正数なるざる可からざるに一般に負数と
なり理論に厳密に合致せざるに就ては實験の誤差以外に種々の原因あり第一にエマソイドコ
ロイドは一般にポアスイ氏の法則に厳密には従はさること、第二に吸着に依って毛管を上昇する糊の変化が見られること、第三に本研究第三報（本論大正五年八五四頁）に依れば濁粉糊は一般にアミロペクチンより成る多糖の塊を含む地方は毛管を上昇させる。可く上昇するはブラウン運動をなす微粒子及び限外線微鏡にても見出される溶液の部分に限らばを以て糊全体としての粘度、濃度の関係は必ずしも非っても測定した結果、細及び紙の毛管は必ずしも期の如き完全なる毛管のみは成らざるとこと、第五表実験の影響、第六上昇させる溶液の蒸発等が考へられる第二の原因としてあげたる吸着の起こる変化としては糊が上昇して温める部分に沃度沃度加里水溶液を加ふれば多くの場合に於て上部に無色の部分あり下部は濁粉に依る黄色を呈するも一般に濁粉は吸着させる。このの為めに上昇が温め水が先づ上方に進むものと考察可きなり第二表中の馬鈴薯、玉蜀黍、小麥及び甘藤澱粉糊の蒸紙に対する上昇の場合沃度沃度加里水溶液に対し無色なる上部の長さは第四表に示すが如し。第四表を示すが如し。第四表

<table>
<thead>
<tr>
<th>第 四 表</th>
<th>無色部分(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>濁度(%)</td>
<td>馬鈴薯</td>
</tr>
<tr>
<td>0.99</td>
<td>13</td>
</tr>
<tr>
<td>1.96</td>
<td>10</td>
</tr>
<tr>
<td>2.91</td>
<td>8</td>
</tr>
<tr>
<td>3.85</td>
<td>5</td>
</tr>
<tr>
<td>4.76</td>
<td>4</td>
</tr>
</tbody>
</table>

第三表に α_1 が負となれるのは主として第一の原因に依る可何となれば著者の水溶液の毛管上昇に関する研究に依れば洋糖、グリセリン、酒精及び葡萄糖等の水溶液の如くポアスイ氏の法則に従ふものに在りては α_1 が正となりて (2) 式が適用させるばよりしたリントナー氏法に依れる可溶性澱粉はアミロペクチンの塊を含まずして粘度、濃度の関係は $n=0$ としてアーレ＝ウス氏の式に合致するも α_1 は負となるを以て第二の原因即ちアミロペクチンの塊を含むことが α_1 が負の理由にはあらず。

以上述べるが如く澱粉糊の毛管上昇距離と濃度の関係は (2) 式によりて実験誤差の範囲内に於て充分に表現せるれども用ふる毛管の種類により多くの場合に恒数 α_1、β_1 が異なることは澱粉糊の試験方法として毛管上昇法を用ふる場合同一種類の毛管を以て糊の性質を比較する必要あるを示すものにして糊附せんとする繊布を毛管として用ふるを理想とすべきである（2）上昇距離と時間の関係

液體の毛管上昇距離と時間の関係はカーメン及びベル雨氏(Cameron and Bell, J. Phys. Chem. 1908, 10, 658)及びオストパル氏(Wo. Ostwald, Koll. Z., 1908, 2, Suppl. Heft, II)に依り各独立に $h=kt^m$ なる式が見出されたり数に k 及び m は恒数なり次で上述のルーキス氏の式に依り恒数の意味も明かにせられたるが著者は前報と同様なる條件に於て各種の澱粉糊の 2%、5%、
4%の濃度のものに就き5分間毎に上昇距離を測定して第五表の結果を得たり2%にして濾紙を用むたる場合は第二表に示すが知り

<table>
<thead>
<tr>
<th>時間（分）</th>
<th>酢酸</th>
<th>綿絹</th>
<th>酢酸</th>
<th>綿絹</th>
<th>小麦</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2%</td>
<td>5%</td>
<td>2%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>35</td>
<td>39</td>
<td>40</td>
<td>39</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>46</td>
<td>45</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>52</td>
<td>53</td>
<td>52</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>50</td>
<td>59</td>
<td>60</td>
<td>59</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>55</td>
<td>66</td>
<td>67</td>
<td>66</td>
<td>67</td>
<td>66</td>
</tr>
<tr>
<td>60</td>
<td>73</td>
<td>74</td>
<td>73</td>
<td>74</td>
<td>73</td>
</tr>
</tbody>
</table>

第五表の計算式は

\[h = k \cdot t \]

なる式に依って充分に表現せられるものをにして其計算値を省略して

第六表に恒數のみを示すべし

<table>
<thead>
<tr>
<th>濾紙</th>
<th>漿紙</th>
<th>漿紙</th>
<th>漿紙</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>5%</td>
<td>2%</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>酢酸</th>
<th>酢酸</th>
<th>小麦</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.634</td>
<td>5.833</td>
<td>0.682</td>
</tr>
<tr>
<td>0.658</td>
<td>5.959</td>
<td>0.649</td>
</tr>
<tr>
<td>0.643</td>
<td>7.080</td>
<td>0.669</td>
</tr>
<tr>
<td>0.498</td>
<td>19.49</td>
<td>0.579</td>
</tr>
<tr>
<td>0.518</td>
<td>10.00</td>
<td>0.744</td>
</tr>
<tr>
<td>0.503</td>
<td>2.606</td>
<td>0.767</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ワールフ・ヘルンベック可溶性糖粉</th>
<th>ワールフ・ヘルンベック可溶性糖粉</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.387</td>
<td>4.693</td>
</tr>
</tbody>
</table>

"リントナー氏可溶性糖粉"に於ては、前記の方法に依って計算せり。
実験条件前項と同様なる場合に小楽水蒸気が乾燥速度を示す速度を用いた場合、上昇距離各 20、30 及び
40mmに就て測定せる上昇時間は第七表の如し。

第七表の實例値が(4)式に依りて充分表現せるや否やを試みるために(2)式の場合と同様に図法に依り恒数α₁、β₂を求上げ昇時間より濃度を計算せるものは第八表の如し但しα₁ = -0.332、β₂ = 0.880、α₂は上昇距離20、30及び40に対して夫々-0.415、-0.108及び0.114として計算せり

<table>
<thead>
<tr>
<th>上昇距離(mm)</th>
<th>上昇時間(分)</th>
<th>質測濃度(%)</th>
<th>計算濃度(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3.8</td>
<td>1.96</td>
<td>1.96</td>
</tr>
<tr>
<td>30</td>
<td>6.3</td>
<td>2.91</td>
<td>3.07</td>
</tr>
<tr>
<td>40</td>
<td>8.3</td>
<td>4.76</td>
<td>4.98</td>
</tr>
</tbody>
</table>

計算濃度は實驗誤差の範囲内に於て質測値に一致し毛管上昇時間と濃度の関係は(4)式に依りて表現させるや事を知る

第四 糊の浸透と毛管上昇の関係

染織工業に於て技術上線維に対する糊の浸透とそれによる線維の変化が互に交錯することに依って成立する空間を糊が占める現象なりと定義しつつ東方と著者は更に浸透を二種類に分類して考へることの合理的にして且又技術上有意義なるを信ず第一は被浸透が外部より加へられる圧力に依るものにして之を外力浸透と呼び第二は被浸透が糊の表面張力に依るものにして之を内力浸透と称す外力浸透は線材ポールその他の装置を以て布面に糊を塗る場合又は重力に依って糊が布面に圧せる場合等に線維線維相互の間際の如き比較的大なる空間を糊が占める現象にして表面張力の作用は外力浸透は線材線材の各を成す繊維の間際の如き甚だ狭小なる空間を糊が占める現象にして表面張力の影響甚大にして同時にポール等に依って加へられる圧力の影響は無視し得る場合なら一般の糊付操作に於ては布面に糊を付する場合に光外力浸透に依って大なる間際が充たされ次で内力浸透に依って小なる間際が充たされる糊が置かれた模様以外に浸透が起こり得る圧力浸透に依する現象なり

難溶糊はゲルとソルの混合させるものにして外力浸透に於ては共組成を変せずして浸透すると考へて可なるも内力浸透に於てはゲルは浸透せずしてソルの部分のみが浸透すと考へらる従って外力浸透の場合には同一時間の浸透距離は糊全体としての粘度の平均に比例すべき本研究第二報などの如き難溶糊の粘度の測定は糊の外力浸透距離の大小の判別に役立つものにして例へば同一濃度に於て粘度大なる馬鈴薯難溶糊の浸透距離は粘度小なる米難溶糊またはウォルフ・ヘルンバッハ可溶性難溶糊の浸透距離よりも小なりと云ひ得可きも難溶糊の粘度の大小は主としてゲルの部分に依るもの故に内力浸透に於ては糊全体としての粘度は浸透距離の大小の判別には役立たず本研究を加く毛管上昇距離の測定に依たざる可からに第五表によれば或濃度に於ては米難溶糊及び
ウルフ・ヘルンバッハ所溶性澱粉糊の方が却って馬鈴薯澱粉糊よりも浸透距離の小なるを知る

斯の如く毛管上昇試験法は接染物、仕上糊などの如く内力浸透の重要なる糊の試験法として現
今他の如何なる方法を以ても達し得ざる實際上有效なる試験法なるのみならず本研究に依り上昇
距離、濃度及び時間の数式的関係も明かにせられた此方法の根底を成せり

第五 総 括

(1) 綿布、紡布、濾紙に対する各種澱粉糊の毛管上昇距離と濃度との関係は上昇時間一定
の場合にlog $h = k_1 - l_2 p / (1 - h_2 p)$ に依り表現せられ此式はルーカス氏の毛管上昇に関する式及
びアーレエウス氏の水溶液の粘度、濃度に関する式より誘導せられる

(2) 毛管上昇距離と上昇時間との関係は濃度一定の場合にオストワルド氏の式 $h = km$ に
より表現せられる

(3) 濾紙と濃度との関係は上昇距離一定の場合 $p = (log t - k_2) / (l_1 + c_2 (log k_2))$ なる式
にて表現せられ此式もルーカス、アーレエウス兩氏の式より誘導せられる

(4) 綿布に対する糊の浸透を外力浸透と内力浸透とに分類し内力浸透の試験法として教示上昇
法をとるべきを論ぜり

附記 本研究に関し懇談なる御指導を賜はりし野口貞之助氏に謹謝す（東京工業試験所第四部
に於て）

（大正一五年八月二六日受理）

水溶液の濾紙毛管上昇に於ける

上昇距離、時間及び濃度の関係

（大正一五年四月四日工業化學会第二九年會に於て講演）

工學士 芳 野 守 三

第一 緒 言

著者は潮粉糊研究第四報に於て各種澱粉糊の毛管上昇に於ける上昇距離及び時間に対する濃度
の関係を表現する式を誘導したが澱粉糊はソル及びゲルの混合せられる複雑なるコロイドにして水
溶液としては特殊なる部分に属し此等の式の意義より考えれば真の水溶液に対してはより善き適
用を見不可否なるを以て著者は蒸糖の水溶液に就て実験し更に文献に依りシミット氏（Hans Schmidt）、ゲッペルスレーダー氏（F. Goppelsroeder）等の葡萄糖、グリセリン、酒精等の水溶液に
依る実証値を以て著者の式の適否を検し又シミット氏の式と比較させるを以て其概要を報告せん
とす