第4冊

石鹸煮沸作業の研究（第6報）

ニートリーブと＝ガーレの分離に就て

川上八十太

緒 言

本研究に於てはフィッティング後、静置時間と＝ガーレの分離し来る量との関係を各種の條件の下に求めたり。

実験の部

(I) 日常普通の作業を行いた場合、静置時間と＝ガーレの分離量の関係を求むべく次に研究を行へり。脂肪酸の特数（中和値 218.0, 沸點値 39.9, ダイナー 37.6℃）なる化粧石鹸素地を大量に製造中、適當なる形式の（経験に依り外観を目測して定む）フィットを行い静置せんとする時、充分摂拌しつつある煉化釜より平均の試料約 60cc を採る。之を 1cc 毎に目盛せる管合せ給付銅子管（外径 31mm, 長さ 155mm）に入れ、98±2℃の恒温槽内に 2 階夜静置させめて各時間の経過毎に分離せる＝ガーレの重量を読みたり。＝ガーレの重量の全試料の重量に対する百分率を第 1 表及第 1 圖に示す。実験は 8 週間立て行ひ毎回 2 箇の試料を取り其の読みを平均せり。

第 1 表 静置時間と分離せる＝ガーレの重量との関係

<table>
<thead>
<tr>
<th>静置時間</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
<th>No. 6</th>
<th>No. 7</th>
<th>No. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1時間</td>
<td>15.0%</td>
<td>25.0%</td>
<td>17.0%</td>
<td>12.5%</td>
<td>26.0%</td>
<td>31.0%</td>
<td>15.0%</td>
<td>20.5%</td>
</tr>
<tr>
<td>2</td>
<td>19.5%</td>
<td>28.2%</td>
<td>23.0%</td>
<td>19.5%</td>
<td>29.0%</td>
<td>33.3%</td>
<td>20.6%</td>
<td>24.7%</td>
</tr>
<tr>
<td>4</td>
<td>21.5%</td>
<td>29.5%</td>
<td>24.2%</td>
<td>21.6%</td>
<td>32.0%</td>
<td>34.2%</td>
<td>23.7%</td>
<td>27.7%</td>
</tr>
<tr>
<td>7</td>
<td>22.2%</td>
<td>30.8%</td>
<td>24.9%</td>
<td>22.7%</td>
<td>33.0%</td>
<td>35.0%</td>
<td>24.3%</td>
<td>29.5%</td>
</tr>
<tr>
<td>10</td>
<td>22.7%</td>
<td>32.0%</td>
<td>25.3%</td>
<td>23.2%</td>
<td>33.2%</td>
<td>35.5%</td>
<td>24.5%</td>
<td>30.2%</td>
</tr>
<tr>
<td>20</td>
<td>23.7%</td>
<td>33.8%</td>
<td>26.1%</td>
<td>24.5%</td>
<td>33.7%</td>
<td>36.5%</td>
<td>24.7%</td>
<td>32.2%</td>
</tr>
<tr>
<td>40</td>
<td>24.2%</td>
<td>34.5%</td>
<td>26.7%</td>
<td>25.0%</td>
<td>34.3%</td>
<td>39.2%</td>
<td>25.0%</td>
<td>32.6%</td>
</tr>
</tbody>
</table>

第 1 圖

第 1 表の結果より Lalanne の変態の原則（松井氏、本誌附録第 3 載）を記載して実験式を求めしにいづれの測定もよく又後述の各種の測定のいづれも例外なく次の一式を満足せり。

\[(a - V)t = b \cdots (1)\]

式中 \(t\) は静置時間(時), \(V\) は分離せる＝ガーレの重量%を示す. \(a\) 及 \(b\) はフィットの際の石鹸の種類、濃度及び重量、性質性質の如き電解質の濃度に依って定まる常数なり. 今 \(V = \infty\) とせば, \(V = a\), 各ち \(a\) は完全に静置せる場合の＝ガーレの重量%を示す. 又 \(V = 0\) とせば \(t = b/a\). 即ち静置開始より \(b/a\) 時間までは＝ガーレの分離を認め得ざることを示す. 各測定値より最小自乗法にて常数 \(a, b\) を求めしに次表の如し.
任意の間隔を設ける際のニーガーの分離の程度を比較する時にも「ニーガーの分離度」なる数値を用いるが最も便である。ニーガーの分離度とは任意の間隔に於て分離させるニーガーの疎密度の完全分離の際のニーガーの疎密度(a)に対する百分率なり。上記の測定に於けるニーガーの分離度を種々の静置時間に就て計算し之を第2表に示す。

第2表 ニーガーの分離度

<table>
<thead>
<tr>
<th>静置時間</th>
<th>6時間</th>
<th>12時間</th>
<th>24時間</th>
<th>48時間</th>
<th>72時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>91.2%</td>
<td>95.6%</td>
<td>97.8%</td>
<td>98.9%</td>
<td>99.3%</td>
</tr>
<tr>
<td>No.2</td>
<td>90.4%</td>
<td>95.2%</td>
<td>97.6%</td>
<td>98.8%</td>
<td>99.2%</td>
</tr>
<tr>
<td>No.3</td>
<td>92.5%</td>
<td>96.3%</td>
<td>98.1%</td>
<td>99.1%</td>
<td>99.4%</td>
</tr>
<tr>
<td>No.4</td>
<td>91.7%</td>
<td>94.8%</td>
<td>97.4%</td>
<td>98.7%</td>
<td>99.4%</td>
</tr>
<tr>
<td>No.5</td>
<td>94.7%</td>
<td>97.3%</td>
<td>98.7%</td>
<td>99.3%</td>
<td>99.6%</td>
</tr>
<tr>
<td>No.6</td>
<td>94.3%</td>
<td>97.1%</td>
<td>98.6%</td>
<td>99.3%</td>
<td>99.5%</td>
</tr>
<tr>
<td>No.7</td>
<td>95.4%</td>
<td>92.6%</td>
<td>99.3%</td>
<td>98.1%</td>
<td>98.8%</td>
</tr>
<tr>
<td>No.8</td>
<td>90.0%</td>
<td>94.9%</td>
<td>97.5%</td>
<td>98.7%</td>
<td>99.2%</td>
</tr>
<tr>
<td>平均値</td>
<td>91.0±2.0</td>
<td>95.5±1.0</td>
<td>97.7±0.5</td>
<td>98.6±0.3</td>
<td>99.3±0.2</td>
</tr>
</tbody>
</table>

実際の石鯉煮沸作業に於て間隔の静置にて満足なるニーガーの分離を得るべきを定めると、第2表中に示す8間の測定の平均のニーガー分離度が最も有力なる参考数値なるべし。第2図に静置時間と平均のニーガー分離度の関係を図示。第3表及び第2図に依れば約2～3晩の静置に依り全ニーガーの疎密度の99％は分離し残り1％がニートソープ中に残存するものと考えられる。今（普通程度のフィットを行えば）ニーガーの疎密度は4％附近にしてニーガーの量とニートソープの量の比は3/7～4/6 なり。1％のニーガーの残存に依り生ずるニートソープ内への疎密度の増加は4×1/100×3/7=0.02% 乃至4×1/100×4/6=0.03% に過ぎず。食流を用みて懸濁する場合にはニーガー中に含有する食流以外の不純物（蒸塩アルカリ、酸塩アルカリ等）のニートソープへの影響は更に小となるを以て、1～2晩の静置は満足なる作業を行うに必要なるべし。但し静置中石鯉が約85℃以下に冷却せざることを必要とする。石鯉の冷却に依る分離適度の影響に就ては後述せん。

第3表

<table>
<thead>
<tr>
<th>静置時間</th>
<th>45</th>
<th>48</th>
<th>53</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1時間</td>
<td>50.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>51.7%</td>
<td>40%</td>
<td>80%</td>
<td>29.5%</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>52.5%</td>
<td>42%</td>
<td>82%</td>
<td>36.1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
第4冊

石鹸洗浄作業の研究（第6報）

<table>
<thead>
<tr>
<th>No.</th>
<th>15</th>
<th>7</th>
<th>23</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>58.3</td>
<td>53.3</td>
<td>53.3</td>
<td>53.3</td>
</tr>
<tr>
<td>b</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
</tbody>
</table>

食塩濃度

<table>
<thead>
<tr>
<th>No.</th>
<th>3.2</th>
<th>2.9</th>
<th>2.5</th>
<th>2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>53.4</td>
<td>43.1</td>
<td>24.1</td>
<td>33.3</td>
</tr>
<tr>
<td>b</td>
<td>7.3</td>
<td>3.4</td>
<td>7.3</td>
<td>9.3</td>
</tr>
</tbody>
</table>

α, βは上記の測定結果を用ひ、第1式に適合する様、最小自乗法にて定めたらものなり。

第3図

=ガーキ離の実験式 (a−V) = b 中の α, βの値に上表に掲げし数値を代入し夫々の石鹸濃度に於て等間時間12, 24, 48時間に於ける=ガーキの分離度を計算し第3図に示す。円に佐以て明かなる如く石鹸濃度の小なる程=ガーキの分離度は著しく良好なり。郎ち分離の速度大なることを示す。

略と完全なる分離（=ガーキの分離度90%のとき）を行う要する時間は、石鹸の濃度48%以下にては12時間以下、58〜55%にては約1晩夜、60%以上のはときは2晩夜以上を要すべし。

(III) 石鹸の濃度略と同一なるときフィットの程度に依り=ガーキの分離度が如何に影響するかを、工業的に大規模に行ひてある銭化釜より試料を採り測定せし、第4表に示す如き結果を得たり。

第4表

等級分離の実験

<table>
<thead>
<tr>
<th>実験番号</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
<th>No.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>石鹸濃度</td>
<td>1.8時</td>
<td>1.3時</td>
<td>3時</td>
<td>2時</td>
</tr>
<tr>
<td>分離度</td>
<td>4.9%</td>
<td>17.5%</td>
<td>2.0%</td>
<td>2.6%</td>
</tr>
<tr>
<td>時間</td>
<td>3.5</td>
<td>2.8</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>分離度</td>
<td>27.5%</td>
<td>24.0</td>
<td>14.9</td>
<td>11.3</td>
</tr>
<tr>
<td>時間</td>
<td>4.7</td>
<td>6.5</td>
<td>5</td>
<td>5.7</td>
</tr>
<tr>
<td>分離度</td>
<td>34.0%</td>
<td>27.0</td>
<td>22.1</td>
<td>14.7</td>
</tr>
<tr>
<td>時間</td>
<td>7.0</td>
<td>15.0</td>
<td>7</td>
<td>8.5</td>
</tr>
<tr>
<td>分離度</td>
<td>35.8%</td>
<td>28.2</td>
<td>22.4</td>
<td>16.1</td>
</tr>
<tr>
<td>時間</td>
<td>15.0</td>
<td>23.6</td>
<td>23.5</td>
<td>17.5</td>
</tr>
<tr>
<td>分離度</td>
<td>37.0%</td>
<td>23.7</td>
<td>23.7</td>
<td>18.5</td>
</tr>
<tr>
<td>時間</td>
<td>25</td>
<td>28.7</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>分離度</td>
<td>38.2%</td>
<td>33.7</td>
<td>24.0</td>
<td>18.8</td>
</tr>
<tr>
<td>時間</td>
<td>48</td>
<td>31</td>
<td>24.0</td>
<td>20.0</td>
</tr>
<tr>
<td>分離度</td>
<td>40.0%</td>
<td>36.7</td>
<td>24.0</td>
<td>18.8</td>
</tr>
<tr>
<td>時間</td>
<td>73</td>
<td>46</td>
<td>34.1</td>
<td>20.4</td>
</tr>
</tbody>
</table>

※ 印は=ガーキ=ガーキ以外に中間層を生ず、その層の體積は=ガーキに算入せず。
† 印は=ガーキ=ガーキ以外に亜液の層を生じたり、亜液層の體積は=ガーキに算入せり。

上記の4図の測定の際の等間前後の石鹸の組成及実験式 (a−V) = b に適合する α, βの値を第5表に示す。

第5表

等間前後の組成

<table>
<thead>
<tr>
<th>実験番号</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
<th>No.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>組成</td>
<td>58.0%</td>
<td>58.8%</td>
<td>57.5%</td>
<td>59.9%</td>
</tr>
<tr>
<td>石鹸濃度</td>
<td>2.73</td>
<td>5.00</td>
<td>6.80</td>
<td>7.23</td>
</tr>
<tr>
<td>亜液量</td>
<td>54.8</td>
<td>65.2</td>
<td>69.4</td>
<td>75.6</td>
</tr>
<tr>
<td>亜液中の水分</td>
<td>40.9</td>
<td>29.1</td>
<td>24.8</td>
<td>20.7</td>
</tr>
<tr>
<td>亜の値</td>
<td>49.2</td>
<td>13.8</td>
<td>26.4</td>
<td>38.0</td>
</tr>
</tbody>
</table>

左記測定の結果より得た α, βの値を実験式に入れる各等間時間に対する=ガーキ=ガーキの分離度を計算し、両者の関係を明かに示すため第4図に示せり。
第 4 圖

フイットの程度が蒸して過ぎるとも（第 4 圖 No. 4）、赤絞りに過ぎることも（第 4 圖 No. 1）がガーゼの分離度は思くなり同一時間内に蒸気の分離度を得るためにはフイットの程度に適当の蒸の存することを示す。一般にガートソープと＝ガーゼの間に中間層の出現させる程度及発液層の多少量に出現させる程度の範囲に於ては、概して良好なる＝ガーゼの分離を行い得べし。

第 5 園

フイットの程度が蒸して過ぎるとも（第 4 圖 No. 4）、赤絞りに過ぎることも（第 4 圖 No. 1）がガーゼの分離度は思くなり同一時間内に蒸気の分離度を得るためにはフイットの程度に適当の蒸の存することを示す。一般にガートソープと＝ガーゼの間に中間層の出現させる程度及発液層の多少量に出現させる程度の範囲に於ては、概して良好なる＝ガーゼの分離を行い得べし。

第 5 園

フイットの程度が蒸して過ぎるとも（第 4 圖 No. 4）、赤絞りに過ぎることも（第 4 圖 No. 1）がガーゼの分離度は思くなり同一時間内に蒸気の分離度を得るためにはフイットの程度に適当の蒸の存することを示す。一般にガートソープと＝ガーゼの間に中間層の出現させる程度及発液層の多少量に出現せる程度の範囲に於ては、概して良好なる＝ガーゼの分離を行い得べし。

（IV）結果の條件 試験物を満足し中加温槽の外側より＝ガートソープと＝ガーゼの分離しつつある状態を観察するに、満足の初期には＝ガートソープと＝ガーゼの分離及び移動が同時に関係に明かならず。満足満足開始後約1時間前後に時盤数字の約下部に少量の＝ガーゼが密れて、始めて＝ガーゼの層と、＝ガーゼを多量に混じや明確なる＝ガートソープの層と明かに区別し得。次に時間の経過するに従ひ＝ガートソープの層を＝ガーゼの小粒子が徐々に沈降し来るを認め、徐々に＝ガートソープの蒸の重きを増じ一方＝ガーゼの蒸の重きを増じ、混非常に蒸きを分けて行ふときのみ、＝ガートソープ層と＝ガーゼ層の中間に明かなる中間層を生じ、そして時間の経過するに従ひて中間層の蒸の重きは徐々に減少するに反し、＝ガートソープ及＝ガーゼの蒸の重きは増加せり。然し長期の満足及び餌も中間層は消失することをなし。これより蒸加中間槽 (Middle Soap) (R. H. Ferguson and A. S. Richardson, Ind. Eng. Chem., 1932, 24, 1329) より成るものと如し。仮に室温に於ける＝ガーゼと＝ガートソープとの分離の適宜は、主として＝ガートソープ中に混合する＝ガーゼの小粒子が蒸する速度の大小に依って支配されるものと考ふるを適當とす。故に＝ガーゼと＝ガートソープの比の重の大きなること、及＝ガートソープの粘度の小なることは分離の速度を速くせしむ。今フイットを蒸く行ふる両者の比の重の差は（特に中間層の現はる場合）若し蒸くと分離速度も赤くとなす。反則に＝ガーゼを蒸くせば（特に発液層の現はる場合）両者の比の重の差は大となり＝ガートソープの食度合を増し、＝ガートソープの水加減を減少し仮に水加減を著しく増加す。従って＝ガーゼの分離も著しく妨げられる。故に適當

第 5 園

フイットの程度が蒸して過ぎるとも（第 4 圖 No. 4）、赤絞りに過ぎることも（第 4 圖 No. 1）がガーゼの分離度は思くなり同一時間内に蒸気の分離度を得るためにはフイットの程度に適当の蒸の存することを示す。一般にガートソープと＝ガーゼの間に中間層の出現させる程度及発液層の多少量に出現せる程度の範囲に於ては、概して良好なる＝ガーゼの分離を行い得べし。

次に満足中に酸化亜鉛を蒸して過ぎるとも（第 4 圖 No. 4）、赤絞りに過ぎることも（第 4 圖 No. 1）がガーゼの分離度は思くなり同一時間内に蒸気の分離度を得るためにはフイットの程度に適当の蒸の存することを示す。一般にガートソープと＝ガーゼの間に中間層の出現せる程度及び発液層の多少量に出現させる程度の範囲に於ては、概して良好なる＝ガーゼの分離を行い得べし。

次に満足中に食加中間層の外側より＝ガートソープと＝ガーゼの分離しつつある状態を観察するに、満足の初期には＝ガートソープと＝ガーゼの分離及び移動が同時に関係に明かならず。満足満足開始後約1時間前後に時盤数字の約下部に少量の＝ガーゼが密れて、始めて＝ガーゼの層と、＝ガーゼを多量に混じや明確ならなる＝ガートソープの層と明かに区別し得。次に時間の経過するに従ひ＝ガートソープの層を＝ガーゼの小粒子が徐々に沈降し来るを認め、徐々に＝ガートソープの蒸の重きを増じ一方＝ガーゼの蒸の重きを増じ、混非常に蒸きを分けて行ふときのみ、＝ガートソープ層と＝ガーゼ層の中間に明かなる中間層を生じ、そして時間の経過するに従ひて中間層の蒸の重きは徐々に減少するに反し、＝ガートソープ及＝ガーゼの蒸の重きは増加せり。然し長期の満足及び餌も中間層は消失することをなし。これより蒸加中間槽 (Middle Soap) (R. H. Ferguson and A. S. Richardson, Ind. Eng. Chem., 1932, 24, 1329) より成るものと如し。仮に室温に於ける＝ガーゼと＝ガートソープとの分離の適宜は、主として＝ガートソープ中に混合する＝ガーゼの小粒子が蒸する速度の大小に依って支配されるものと考ふるを適當とす。故に＝ガーゼと＝ガートソープの比の重の大きなること、及＝ガートソープの粘度の小なることは分離の速度を速くせしむ。今フイットを蒸く行ふる両者の比の重の差は（特に中間層の現はる場合）若し蒸くと分離速度も赤くとなす。反則に＝ガーゼを蒸くせば（特に発液層の現はる場合）両者の比の重の差は大となり＝ガートソープの食度合を増し、＝ガートソープの水加減を減少し仮に水加減を著しく増加す。従って＝ガーゼの分離も著しく妨げられる。故に適當

第 5 園

フイットの程度が蒸して過ぎるとも（第 4 圖 No. 4）、赤絞りに過ぎることも（第 4 圖 No. 1）がガーゼの分離度は思くなり同一時間内に蒸気の分離度を得るためにはフイットの程度に適当の蒸の存することを示す。一般にガートソープと＝ガーゼの間に中間層の出現せる程度及発液層の多少量に出現させる程度の範囲に於ては、概して良好なる＝ガーゼの分離を行い得べし。

次に満足中に酸化亜鉛を蒸して過ぎるとも（第 4 圖 No. 4）、赤絞りに過ぎることも（第 4 圖 No. 1）がガーゼの分離度は思くなり同一時間内に蒸気の分離度を得るためにはフイットの程度に適当の蒸の存することを示す。一般にガートソープと＝ガーゼの間に中間層の出現せる程度及び発液層の多少量に出現させる程度の範囲に於ては、概して良好なる＝ガーゼの分離を行い得べし。
第4節

石層剥離作業の研究（第7報）

長さ1m、直径3cmの鋼管筒にヒートソープを入れ鋼管筒の外側に融々の温度の水を洗して融々の温度に保つ、直径1/8の鋼繊維を石層層中に落下させ、それが5cmの距離を落下するに要する時間（秒）を測定せしめ、第5節の如し。鋼管に於て明かなる如く温調80℃以下にてはヒートソープの粘度は急激に増大するため、ヒーターの分離も従て著しく防止さるるを示す。ウロップ氏はヒートソープが冷却する100℃までではヒーターの分離に影響を及ぼす述べているも、本研究に於て70℃以下に於ては實際的の分離は殆ど観察得ず100℃附近と変らざるヒーターの分離を求むるにはヒートソープの冷却を許し得る温調80℃附近なり。

結論

1. フィッティング作業後の融着剤を装置せばヒーターとヒートソープに分離す。其分離の状態は次の一般式にて示することを得。（式）

\[V = b - V(t) \]

2. 時間のフィットを行へば高圧の融着剤が流れる融着剤の分離は速かに起こる。高圧の融着剤が冷却（約80℃以下にて）せざる限り约5分内外にて分離すべきの90%は分離す。

3. 同一高圧に於てはフィットが流れる速さも、又細かに過ぎてもヒーターの完全なる分離に要する時間は長くなる。

（花王石巖工場研究室）

石巖煮沸作業の研究（第7報）

フィッティング終話の新判別法

川上八十太

緒言

従来フィッティングの終話に判定するには融着剤の外観を目測する定性的のものなりしそ、簡単なる遠心分離を適用する定量の方法を考案し、其が優れた所を明かにせり。

実験の部

ヒートソープの層をヒーターの小粒子が沈降する速度はストークスの法則に依れば

\[\frac{dx}{dt} = \frac{r^3(D - d)}{4\eta} \times g \]

式中

\[\frac{dx}{dt} \] はヒーター粒子の沈降速度、\[r \] はヒーター粒子の半径、\[D \] はヒートソープの粘度、\[\eta \] はヒートソープの密度。

今角速度\(\omega \) 圓陣の半径\(R \)なる遠心分離器内にてヒーターの分離を行ふときは

\[\frac{dx}{dt} = \frac{r^3(D - d)}{4\eta} \times \omega^2 R \]

御同ヒーター粒子の沈降速度は電力ののみに依する場合の\[\frac{r^2p}{g} \] 倍となるべし。銅に同速数3000 r.p.m.同