<table>
<thead>
<tr>
<th>No.</th>
<th>原料</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
<th>No. 6</th>
<th>No. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Total ash</td>
<td>0.51</td>
<td>0.53</td>
<td>0.70</td>
<td>0.39</td>
<td>0.68</td>
<td>0.68</td>
<td>0.70</td>
</tr>
<tr>
<td>3.</td>
<td>Oil</td>
<td>3.79</td>
<td>3.10</td>
<td>4.08</td>
<td>4.32</td>
<td>3.86</td>
<td>4.09</td>
<td>3.64</td>
</tr>
<tr>
<td>4.</td>
<td>Insol. ash</td>
<td>0.25</td>
<td>0.30</td>
<td>0.38</td>
<td>0.21</td>
<td>0.25</td>
<td>0.29</td>
<td>0.31</td>
</tr>
<tr>
<td>5.</td>
<td>Hide Subst.</td>
<td>46.35</td>
<td>47.47</td>
<td>46.70</td>
<td>44.50</td>
<td>45.89</td>
<td>46.10</td>
<td>45.60</td>
</tr>
<tr>
<td>7.</td>
<td>Non-tannin</td>
<td>3.72</td>
<td>3.65</td>
<td>3.75</td>
<td>3.98</td>
<td>3.25</td>
<td>3.10</td>
<td>3.72</td>
</tr>
<tr>
<td>8.</td>
<td>Soluble tannin</td>
<td>3.47</td>
<td>3.23</td>
<td>2.95</td>
<td>3.23</td>
<td>3.40</td>
<td>3.35</td>
<td>3.43</td>
</tr>
<tr>
<td>10.</td>
<td>Deg. of tannage</td>
<td>61.55</td>
<td>61.09</td>
<td>61.82</td>
<td>66.94</td>
<td>61.12</td>
<td>62.60</td>
<td>61.66</td>
</tr>
</tbody>
</table>

示す。8日後に於てはNo. 3及No. 4は約7分程度、No. 5は約8分程度、No. 6は殆ど全腐さり。9日後は液糖を40℃に満たし、10日後にてNo. 4及No. 5は全腐、14日後にてNo. 3全腐、30日後にてNo. 2は約5分程度腐壊、No. 1は殆ど未腐壊の状態なり。

**タングス全腐食皮はよく水洗せる後0.3% Na₂CO₃液、次に0.6% H₂SO₄液に各20分間浸漬せしめてよく水洗せり。室温にて乾燥せる後防護（Grainside）に少量の牛胸肉を塗りたる後充分乾燥せり。斯ぐの如くして製造される茶の外観は黒色滑らかに

**（東京工業大学建築材料研究所）（昭和 15 年 4 月 2 日受理）

（145〜147）滑石磁器の研究（第18〜20報）

近藤 清治・鈴木 信一

高周波電場に於ける電気的性質

要 旨

ステアライ化素地99種類のtanδ及εを求め、結晶誘電体損型磁器を得るには、（1）滑石含有量の大なること、（2）アルミナ含有量の少きこと、（3）長石の使用を増やすこと、（4）素地に微粉を生ずる粉をMgO, CaOの配合比を増やすと、（5）成形條件を

高周波工学の発展に伴って之等の周波数領域に於て優秀なる特性を有する誘電体損型磁器を更に求むること極めて大なるものがある。高周波用磁器にはステアライ化素地、チタニウム磁器、磁性酸ガラス、合成樹脂、ベニライト、石英及び雲母等の材料が主として利用され、どれの材料に於ても高周波電場内の誘電体損、誘電率が重要なる性質と考へられ且て器あるいは物に依る劣化の最も小なる物を望む。

然に高周波に於ける測定に於ては従来行はた商用周波数の場合が直頻電場の場合等と異り回路の電磁差電による影響、接地抵抗の影響及電流の影響、測定法の良否等も特異に特に注意を要するものである。本研究室では其他清治氏の労力を得て更に進むが如く電流に於ける影響を更に深く求むことを得た。

日本建築学会誌にては昭和 12 年以来小委員会設置され高周波材料の創成に努力され、本研究室に於ても同会の依頼に従
つて試料を試作しつつある。現在主として周波数変動損失角測定法として使用されているものは次の 6 種類である。
(1) 抵抗差法、(2) リアクタンス変化法、(3) 電橋法、(4) ダイナトロン発振法、(5) 逆-ヘルツ法、(6) 熱量計法。

第１図

第２図

第３図

第４図

以上の結果から、Gt = G + \frac{R}{Z^2} とすれば、之は等価コンダクタンスであり
C = C_1 \pm \frac{G_2 (y-1)}{\omega} となる。

今第 2 図に於けるが知る C_a, C_b なる容量を考へる
G_t = \frac{\omega (C_a - C_b)}{2y - 1} = \frac{\omega \Delta C}{2y - 1}
試料のコンダクタンスは C_a, C_b なるも C_a とすれば、g に対して試料の存在する場合と然らざる場合の G_t を算出するには
G_a = \frac{G (\Delta C_1 - \Delta C_2)}{2y - 1}

史は試料を入った場合、C_a は試料を出した場合である。誘導

第 2 図に於けるが知る C_a, C_b なる容量を考へる

真直管電圧計を指示器とし検流計の振れ θ は入力電圧と θ \propto \frac{V}{R} \frac{V}{\theta} なる関係を有する事を利用して
\Delta C_1 \Delta C_2 \frac{V_{inf}}{V_{ref}} = \frac{\sqrt{\theta_0 \cdot \theta_1}}{C_e} \cdot \frac{\Delta C_2}{2y - 1}

C₁の内部に装填して内部電極を軸方向に動かすことにより容量変化を示す。内部電極の直径は8mm、外部電極の内径は10mm、内部電極の外径は40mm、静電変位は約10pFである。1目的込め1/100mmに対する変化量は0.0025pFである。

H₂、H₃を含むが、これについては別途述べる。H₄は(V)なる真空管電極計及電源を含む部分で真空管電極計は3極管を有し、Lに接続し直流式をとるものである。Gは試料用に挿入された検流計で第2図に示す。測定を実施するには温度設定を行う。測定試料の表面は錆を除去し、表面を平滑に仕上げてから測定を開始した。モビリゼーションのtanθは周波数が7～8×10⁻⁴程度であって充分使用しうるがアルコールを用いて密着させると良い。測定試料は初め電気乾燥器にて乾燥し、吸湿水中を除きデシケーター内に保存する。

試料の化学組成は第1表に掲げたもの等試料の組成に沿う問題、熱的加熱性、耐酸性等に述べたと同様に数回に張り合わせるのに適当な温度を制限し、機械的性質を測定した。各試料の結果を表記して示した。以上の結果を示す本報については記述する。この他にスケッチは高周波に於ける試料の経時的な変化を示す。
前表に於けるが知く測定周波数は 1,000 K.C., 2,000 K.C., 1,000 K.C. の 3 種である。ステアタイトの tanδ とモーダル式で表示した雲石極との関係を考察するに次のごくである。(1) マグネシア分子数の大きな雲 tanδ は大である。(2) アルミナ分子数の
増加は tanδ を増加する。(3) 硫酸分子数増大する雲 tanδ は減少する。(4) ムールの混有は極めて少量でも急激に tanδ を増大せしめる。

電気導率は大槻に於て tanδ の小なる雲岩種大あり、tanδ の
大なる雲岩は次第に普通磁極の値に近づく。

ステアタイトの tanδ 及 が周波数特性は何れも周波数の増加
即ち波長の短くなる絶縁度の値を減少するものである。此場合に
tanδ は周波数の増加に対してアルミナ分子数の大きい雲岩極
減少大かかるマグネシア及び硫酸の分子数の大きい雲岩即ち tanδ
の小なる優秀なる雲岩では共変化率が小である。電気導率の変化は
雲岩周波数の 10 倍の増加に対しても大なる约 0.01〜0.03 近過ぎる。

蚊に注意すべきなは同一組成の雲岩もも成形条件に依って差し差
異を示すことである。著者等の実験結果に依りして博物地の成
形よりも安ら成形品の影響の方が大であることが明かとなり同
一組成。同一成形温度の雲岩でも 2〜4 倍程度の偏差を生ずるも
のであるが之は主として焼成間の有無、二次気孔の有無、表面
状況に起因するものである。故に第 15 章に述べたことで近窓
条件の成形条件を異る必要があるから夫々の調整原因の
差異に鑑じて最も適確なる雲岩を得る条件を求むべきたたい。

経 視

(1) 29 雲種のステアタイト雲岩の常温度に於ける tanδ 及 が
測定した。

(2) 測定方法は日本摩摂振興会第 18 小委員会規格案らリア
クタン変化法を使用した。tanδ 及 は共に周波数の増加する
に従って減少し、アルミナ含有分子数の大きな雲其の影響が著
しい。同一周波数に対しては、マグネシア及び硫酸含有分子数の大き
い雲岩はだら tanδ の小となる傾向がある。

(3) tanδ の小なる雲岩薬は比較的誘電率が大きい。前記の 19
雲種中 DV 6, KK 7, KK 9, KK 10, SF 18, SF 19 の 6 種類が
tanδ の最小値を示し周波数 1,000〜1,000 K.C. の範囲にて
5.53〜9.91×10^{-4} であった。

(第 19 報) 誘電体損及び誘電率の温
度並びに湿度特性

要 目

誘電体損及誘電率の温度特性並に湿度特性を抵抗装置法に依り
求め、これ等の値は温度及湿度の影響により増加し且周波数に逆比
例することを知った。薬能象に対して共原因を吟味し併せて前報
の誘電体損と比較した。

本 論

ステアタイト雲岩の tan δ 並びに ε の温度並に湿度特性を求め
た。測定装置としては理化学研究所同研三郎氏の整備した方法
を使用したが其略図を第 1 図に示した。第 1 図に湿度特性を求め
た場合の例であつて湿度特性の観察には電気窓を除去した。湿度
は毎時約 70°C の割合にて上昇し測定直中温度に保つ。此方法は
所調抵抗装置法であつて誘電通常容量並に誘電コンダクタンス
の影響を除くように工夫されたものである。本法に就ては電気学
空質研究上同氏の報告が記載されているので兹には省略する。第
1本文は測定結果である。

<table>
<thead>
<tr>
<th>計測温度 (K)</th>
<th>誘電体損 (tanδ)</th>
<th>誘電率 ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10.05</td>
<td>13.18</td>
</tr>
<tr>
<td>2000</td>
<td>8.50</td>
<td>10.49</td>
</tr>
<tr>
<td>3000</td>
<td>6.91</td>
<td>8.12</td>
</tr>
<tr>
<td>4000</td>
<td>5.11</td>
<td>6.21</td>
</tr>
<tr>
<td>5000</td>
<td>4.01</td>
<td>5.31</td>
</tr>
</tbody>
</table>

第 1 表 誘電体損及誘電率と温度との関係

誘電体損 (tanδ) 計測温度 (100 K.C.)

<table>
<thead>
<tr>
<th>計測温度 (K)</th>
<th>誘電体損 (tanδ)</th>
<th>誘電率 ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10.05</td>
<td>13.18</td>
</tr>
<tr>
<td>2000</td>
<td>8.50</td>
<td>10.49</td>
</tr>
<tr>
<td>3000</td>
<td>6.91</td>
<td>8.12</td>
</tr>
<tr>
<td>4000</td>
<td>5.11</td>
<td>6.21</td>
</tr>
<tr>
<td>5000</td>
<td>4.01</td>
<td>5.31</td>
</tr>
</tbody>
</table>

誘電体損及び誘電率の温度並びに湿度特性

誘電体損及誘電率の温度特性並に湿度特性を抵抗装置法に依り
求め、これ等の値は温度及湿度の影響により増加し且周波数に逆比
例することを知った。薬能象に対して共原因を吟味し併せて前報
の誘電体損と比較した。
K.C. の各に就て図示すれば第 2 ～ 6 図を得る。周波数の増加は温度に依る tanδ の増大する傾向を示さない。而して 100°C 以下では周波数の影響は著しくないけれども 200°C 及 300°C の如く温度が上昇するに従って急激に増加する。換言すれば低周波に於ては温度上昇と共に tanδ は対数曲線的な傾向を以て増加するも高周波では直線的増加率を示す。大體に 100°C 以下では周波数の増加と tanδ とは同一温度では変定数を以て逆比例するのである。此定数はステアライト素地の組成、組織等に依る。磁器の如く種々の結晶及びガラス等を含有し併も密閉状態の複雑なる絶縁體に於ては度等の結果を明瞭に考察する事は困難であるが、温度上昇に依てイオン電導が容易になる事からして tanδ の増大の主因がイオンの電導損失に歸因するものとされる。従って上表中で長石を含む素地は著しく此傾向が現れてある。一般的にイオンに依る電導損失をなす絶縁體では tanδ と周波数との関係は逆比例で表示し得るからである。極めて簡単なる式として tanδ = \(\frac{1}{\epsilon'' R} \) が成立するのである。

誘電率は温度の上昇に依て 100°C に就き 0.01 ～ 0.03 程度の増加を示すが 4000 K.C. に到れば此変化は殆ど認められない。

次に温度に依る tanδ 及 \(\epsilon'' \) の変化の状況を検べたが、混分の影響を著しくして表れず依て得るには本法の測定装置では殆ど不可能であり而も温度平衡に長時間を要するから水中浸没方法を採用して飽和混分とした。其方法は試料を電気乾燥器にて 120°C にて恒
量点乾燥しデキャンター中へ冷却した後沸騰水中に投入して素地内の気雰を置換し、別器冷水中に放置して 24 時間後取り出し乾燥で表面を試し秤量し吸水率を求め前述の装置を用いて測定を行った。

吸水率は殆ど零近く 0.1% 以下であって吸水法では同一試料でも此程度の吸水性は正確なる値を求める事が困難であるから本報には記載しない。吸水による tanδ の増加は微細なるステラタイトでは表面混在ののみを考えれば固有抵抗の減少は之を考慮外に置き得る。従つ混入の影響を示して△tanδ 丈豊電極増失角が増加するものとすれば△tanδ = \frac{1}{\omega C R_K} の如く書き表される（弦にω：周波数、R_K：高周波抵抗）。

第 2 表 tanδ 及 ε の温度特性

<table>
<thead>
<tr>
<th>試料番号</th>
<th>周波数 1000</th>
<th>周波数 2000</th>
<th>周波数 4000</th>
<th>誘導電率 (K.C.)</th>
<th>誘導電率 (K.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV 1</td>
<td>66.60</td>
<td>58.31</td>
<td>44.48</td>
<td>6.28</td>
<td>6.16</td>
</tr>
<tr>
<td>DV 2</td>
<td>77.18</td>
<td>69.57</td>
<td>55.47</td>
<td>6.73</td>
<td>6.32</td>
</tr>
<tr>
<td>DV 7</td>
<td>75.31</td>
<td>66.44</td>
<td>87.70</td>
<td>6.80</td>
<td>6.45</td>
</tr>
<tr>
<td>DV 8</td>
<td>118.60</td>
<td>141.12</td>
<td>158.51</td>
<td>7.11</td>
<td>6.90</td>
</tr>
<tr>
<td>DV 12</td>
<td>74.95</td>
<td>61.74</td>
<td>54.10</td>
<td>6.85</td>
<td>6.69</td>
</tr>
<tr>
<td>DV 13</td>
<td>67.86</td>
<td>61.74</td>
<td>50.83</td>
<td>7.09</td>
<td>6.95</td>
</tr>
<tr>
<td>KK 2</td>
<td>75.16</td>
<td>68.30</td>
<td>54.52</td>
<td>9.16</td>
<td>8.37</td>
</tr>
<tr>
<td>KK 3</td>
<td>65.40</td>
<td>55.96</td>
<td>43.92</td>
<td>8.42</td>
<td>7.31</td>
</tr>
<tr>
<td>KK 7</td>
<td>48.34</td>
<td>45.11</td>
<td>39.50</td>
<td>7.99</td>
<td>7.45</td>
</tr>
<tr>
<td>KK 10</td>
<td>38.10</td>
<td>34.54</td>
<td>30.05</td>
<td>7.12</td>
<td>7.04</td>
</tr>
<tr>
<td>KK 12</td>
<td>73.33</td>
<td>58.38</td>
<td>40.45</td>
<td>8.80</td>
<td>7.91</td>
</tr>
<tr>
<td>KK 13</td>
<td>79.97</td>
<td>72.71</td>
<td>59.81</td>
<td>9.59</td>
<td>8.40</td>
</tr>
<tr>
<td>KKM 13</td>
<td>50.48</td>
<td>42.27</td>
<td>35.29</td>
<td>5.86</td>
<td>5.03</td>
</tr>
<tr>
<td>SF 3</td>
<td>37.00</td>
<td>32.20</td>
<td>22.74</td>
<td>6.21</td>
<td>6.10</td>
</tr>
<tr>
<td>SF 16</td>
<td>43.36</td>
<td>37.59</td>
<td>19.95</td>
<td>6.77</td>
<td>6.53</td>
</tr>
<tr>
<td>SF 18</td>
<td>34.51</td>
<td>28.03</td>
<td>17.83</td>
<td>7.21</td>
<td>7.12</td>
</tr>
<tr>
<td>SF 19</td>
<td>47.05</td>
<td>38.18</td>
<td>29.26</td>
<td>6.86</td>
<td>6.91</td>
</tr>
<tr>
<td>JJ</td>
<td>89.56</td>
<td>77.90</td>
<td>65.78</td>
<td>7.50</td>
<td>7.07</td>
</tr>
</tbody>
</table>

第 4 表の測定結果を考察すれば吸水法に依て混入を飽和させたステラタイトは乾燥状態の約 4～10 倍に達する tanδ の増加を示し、周波数特性は固有数の周波数の増加と共に减少するもの表面に混入の存在しない素地程周波数の影響は少く、之は後者の素地では表面混入が減少であるからである。

温度特性が著アルカリ含有量に影響を受けたるに對して湿度特性は素地の表面状況が最大の影響を與へるから成継間の比較が可能でないのみならず気孔率と吸水率との関係では只開口気孔の

第 8 圖

第 9 圖

第 7 圖

（1）抵抗電法に工夫を加へた岡崎三郎氏の方法を採用して tanδ 及 ε の温度特性及湿度特性を求めた。

（2）温度特性の実験に於て周波数 1000 K.C.、2000 C.K.、4000 K.C. の3種と温度は 20℃、50℃、100℃、200℃、300℃ の5種としてした。

（3）ステラタイトは湿度上界に依り tanδ 及 ε を増加するが其原因はイオン電導に因る固有抵抗の減少であるが、故に tanδ = \frac{1}{\omega C K} なる一般式で表示されるから周波数特性は線形素地の周波数に逆比例して tanδ が減少する ε は tanδ 及 類似の傾向を示すが 100℃ に就て 0.01～0.3 に過ぎない。DV1、DV13、KK 7、KK13、SF16、SF18、SF19 の7種類は温度の影響に対する tanδ の著しい変化を示すこと優秀なる素地であると考えられた。

（4）これ等の素地よりも高温区の抵抗が大なる DV12、KK13 は tanδ の値が常温並に高温度共に不良であるが、之は長石添加の影響が tanδ に対しては比較的低温度の 100℃ 位から現れるに對して抵抗の場合には酥も 500℃ に到って始めて現れるからである。
（5）水中に 24 時間浸漬したステアライト素地の \(\tan \delta \) 及び \(\varepsilon \) を求めて温度特性を検べた。此場合周波数は 1000 K.C., 2000 K.C., 4000 K.C. の 5 種と した。...

（6）湿分に因る素地の \(\tan \delta \) 及び \(\varepsilon \) の増加は素地の表面に存在する開口空孔に原因し、\(\tan \delta \) の増加を \(\Delta \tan \delta \) とすれば
\[
\Delta \tan \delta = \frac{1}{\omega \rho \kappa a}
\]
なる関係が成立する。即ち湿分の影響は周波数に逆比例し、表面抵抗の減少に因って増加する。

（7）熱伝導率の大なる KK2, KK3, KK12, KK13, KKM13 は \(\tan \delta \) の値中位に在る。熱膨張率の小なる素地は概して \(\tan \delta \) は不良である。機械の強度は成形条件が最重要条件であって此點では \(\tan \delta \) が表面条件に支配される事と同一原因に由来する。それ故に機械的強度の劣悪なるものは \(\tan \delta \) も良好でない。耐酸性的良好なる素地は \(\tan \delta \) も比較的良い。

終りに著者等は本研究に対して研究費を援助された三菱電機株式会社並に富士電機製造株式会社に深きなる謝意を表する者である。前本学電気工学科森田研究室の各位の助力を得た點が微々たるを附記して感謝する次第である。

（第 20 報）微構造に就て

要 旨

本報では DV 系素地 5 種、KK 系素地 5 種、SF 系素地 3 種、JL 系素地 1 種及び硫化タルク並びに硫化タルク等 17 種類の微構造を検べた。

高砂石型素地は斜頸火石又は硫土瓶石を主體とし硫黄又はクリストブライトを認むことが多いが融解を添加すると溶解する。然れども構造は極めて簡単である。気孔状況には若しい差異が認められ之は一次的気孔か二次的気孔に出来する。

低砂石型素地はムライト又は遠紫外の粒状構造が良く認められる。構造は複雑である。硫化タルクは硫化タルクに比し介入物を含むことが少な。

緒 言

（第 1～19 報）に記載した素地中 RO-MgO-Al₂O₃-SiO₂ 系ステアライト及び廃棄石素地の微構造を検べた。

鏡 検

第 1 圖（DV1） 図形の小気孔多く（孔径 0.007～0.009 mm), サウス翼磁器特有の粒状構造良く発達し、クリストブライトの微晶を認む。所々に斜頸方石の大結晶が在り長さ 0.020 mm に達する（註 誌開中には無い）。

第 2 圖（DV7） 図形の気孔は少なく大となり空隙孔が多い。（孔径 0.012～0.015 mm), 粒状組織の発達良好ならず、残留石英はクリストブライトに覆う主角を溶解して多角状となるも其大さを概は 0.004～0.006 mm である。

第 3 圖（DV8） 粒状組織は聚集をなし全視野に均在し、気孔は図形をなし 0.012～0.017 mm に達し、石英はクリストブライトに変化す。ガラス質なムライトの良晶を認む。

第 4 圖（DV19） 味土マイクロの微晶が認められ、クリストブライトは主角を有し 0.005～0.009 mm の粒径を通して無数に存在する。ガラス質石英は少ない。

第 5 圖（DV13） 味土マイクロの結晶及ムライトが散在し、石英はクリストブライトに変化して其大さは 0.010～0.013 mm, 粒状組織は結晶をなすも微細なく、比較的大径の空隙がある。
第 6 圖（KK2） DV1 に類似してある。
第 7 圖（KK2） 高圧下に於て観察したものの、白内に現れる輪郭の不鮮明な大結晶である。
第 8 圖（KK3） 気孔構造及び面的不鮮明さ修整するも層状の
結晶を認めた。気孔を残して大きく 0.030 mm に達するものあり
又結晶面隔間は不鮮明な二次の空隙を以てするもので
第 9 圖（KK19） 高速野に互い 結晶大さ相対性方向 吉喜
微鏡標の所より成る。結晶粒径に著しく幅び 0.030 mm 位である。
微孔を残す目も気孔残留せず又ガラス質を認めない。
第 10 圖（KK13） 全程野に互い KK12 と同様の構造を示す
ある様に結晶の大結晶が認められ且 KK12 よりは空隙の粒径が大き
く共数も多い。吉喜細微標の結晶は小であり透明に乏しい。
第 11 圖（KK13） 直交＝コルの観察である。
第 12 圖（KK13） 吉喜細微標の結晶は KK13 よりも一层
良く幅び且微細である。微孔は存在するも気孔で個々透明性に乏
し點は前後より差いる。
第 13 圖（SF13） 大小不規則なる気孔が存在して多い。圭状の
クリスタル部が認められ大きさも 0.020 mm に達し粒状組繊
の発達は改良が土気針状組織の相が多数に存在する。
第 14 園（SF13） 結晶組織は全面に発達するもクリスタルパライ
タが所々に認められる。結晶組織は SF15 より改良されて居る。
第 15 園（SF19） SF18 と類似した構造を示しているが粒状結
晶は微細粒となり微孔の数が増して近在よりも共発見
て居る。場所は透明性に乏しい。
第 16 園（JL） 細小粒子の発達した、粒状組織を全然存
在しない亜気孔が非常に多く 0.030 ～0.020 mm の孔径を有するも
気孔形成が不規則で場所は発達していない。孔の周辺部に面の針状結
晶が放射状に密に集められている。
第 17 園（特徴タテ） 結晶タテと殆ど同様であるが、混入
物がなく倾斜方向に対して 90° 位傾いている。
第 18 園（特徴タテ） 混合度強く直交＝コル下にて 倾斜方向
に平行なる面像を示した。石英の介在が認められた。

総括
(1) 高溶石型ステラチットは斜頸石石又は吉喜微細標を主として
しアルミナが増加するとナトリウムとアルミナを増量する。
(2) 素地のクリスタルパライトは耐石の分解生成物たる 3MgO・
4SiO2・H2O →(3MgO・SiO2) + SiO2 + H2O の反応式によるアルミナ
の加熱変化に由来するものではなく配合礦石に基づくものと論定
される。
(3) 結晶の多い素地は気孔を大きく気孔質凝集有の粒状組織の
発達せるアルミナ含有量の大なる素地では微孔が多い。然し前
者でも融剤を使用すれば微細な組織に変化を証得する。
(4) 高溶石型スレアチット の微構造は極めて細かく組織の
発達せるアルミナ含有量の増加した素地では微孔が多い。
然し前者でも融剤を使用すれば微細な組織に変化を証得する。

著者等は本研究に対して研究費を補助された三菱電機株
式会社並に吉喜電気製造株式会社に對して深謝なる謝意を表する
次第である。

内田章五

(148～149) 炭酸ガス 加压下に於けるアンモニア
ソーダ法の相律的研究（第 1～2報）