アセナフテン系染料の合成に関する研究（第3報）

ナフタルイミドよりナフトスチリル及びアンサンスロンの合成

牧 銳夫・橋本 春吉・鎌田 健

アセナフテンよりナフタル酸及び無水ナフタル酸を経て、ナフタルイミドが酸化で得られることは、既に第1報1）において報告した。著者等はこれより優秀なアセナフテン染料の半間成なるナフトスチリル（Ⅰ）及びアンサンスロン（Ⅱ）の合成を研究した。ナフトスチリル生成の主催者は、Hoffmann反応の適用であり、ナフトルイミドのナトリウム塩（1）に、アルカリ性過酸化ナトリウムを作用させる。反応生成物はアセナフテンの場合に類似すると考えられる。

\[
\begin{align*}
(1) & \quad \text{CO} + \text{H}_2\text{O} + \text{CH}_3\text{COONa} \\
& \quad \rightarrow \quad \text{COONa} + \text{NaCl} + \text{Na}_2\text{CO}_3
\end{align*}
\]

これにケトンを加えて煮沸すると、環化したナフトスチリルを沈澱する。
\[
\begin{align*}
\text{COONa} + \text{CH}_3\text{COOH} & \rightarrow \nonumber \\
\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} & \quad \text{（2）}
\end{align*}
\]

第2図 重合度（P）

第3図

アセナフテン系染料の合成に関する研究（第3報）

ニトウスチリル 6 kg/mm² であって、本邦のポリアルキ酸ビニルの
$P=2300$ のものが 2.69 kg/mm²、ポリニトウスチリルの
$P=1100$ のものが 3.66 kg/mm² で、一般に低い値となっている。
これら数値の相違については今後検討したいと考える。

第2図の No. 22～No. 34 を図示すると第3図のようになる。

フラン系レジンを添加しても強度は殆ど変化なく、フラン系レジン
にレゾールを添加することによりやや大きくなる。

最後に本研究に御指導を賜った日立研究所磐田因郎博士、測定に協力された田中五郎、野形幸夫氏に深謝の意である。

（東京大学工学部応用化学学科研究室）（昭和27年1月19日受理）

（230）アセナフテン系染料の合成に関する研究（第3報）

ナフトルイミドよりナフトスチリル及びアンサンスロンの合成

牧 銳夫・橋本 春吉・鎌田 健

アセナフテンよりナフタル酸及び無水ナフタル酸を経て、ナフタルイミドが酸化で得られることは、既に第1報1）において報告した。著者等はこれより優秀なアセナフテン染料の半間成なるナフトスチリル（Ⅰ）及びアンサンスロン（Ⅱ）の合成を研究した。ナフトスチリル生成の主催者は、Hoffmann反応の適用であり、ナフトルイミドのナトリウム塩（1）に、アルカリ性過酸化ナトリウムを作用させる。反応生成物はアセナフテンの場合に類似すると考えられる。

\[
\begin{align*}
(1) & \quad \text{CO} + \text{H}_2\text{O} + \text{CH}_3\text{COONa} \\
& \quad \rightarrow \quad \text{COONa} + \text{NaCl} + \text{Na}_2\text{CO}_3
\end{align*}
\]

これにケトンを加えて煮沸すると、環化したナフトスチリルを沈澱する。
\[
\begin{align*}
\text{COONa} + \text{CH}_3\text{COOH} & \rightarrow \nonumber \\
\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} & \quad \text{（2）}
\end{align*}
\]

（東京大学工学部応用化学学科研究室）（昭和27年1月19日受理）

（230）アセナフテン系染料の合成に関する研究（第3報）

ナフトルイミドよりナフトスチリル及びアンサンスロンの合成

牧 銳夫・橋本 春吉・鎌田 健

アセナフテンよりナフタル酸及び無水ナフタル酸を経て、ナフタルイミドが酸化で得られることは、既に第1報1）において報告した。著者等はこれより優秀なアセナフテン染料の半間成なるナフトスチリル（Ⅰ）及びアンサンスロン（Ⅱ）の合成を研究した。ナフトスチリル生成の主催者は、Hoffmann反応の適用であり、ナフトルイミドのナトリウム塩（1）に、アルカリ性過酸化ナトリウムを作用させる。反応生成物はアセナフテンの場合に類似すると考えられる。

\[
\begin{align*}
(1) & \quad \text{CO} + \text{H}_2\text{O} + \text{CH}_3\text{COONa} \\
& \quad \rightarrow \quad \text{COONa} + \text{NaCl} + \text{Na}_2\text{CO}_3
\end{align*}
\]

これにケトンを加えて煮沸すると、環化したナフトスチリルを沈澱する。
\[
\begin{align*}
\text{COONa} + \text{CH}_3\text{COOH} & \rightarrow \nonumber \\
\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} & \quad \text{（2）}
\end{align*}
\]

（東京大学工学部応用化学学科研究室）（昭和27年1月19日受理）

（230）アセナフテン系染料の合成に関する研究（第3報）

ナフトルイミドよりナフトスチリル及びアンサンスロンの合成

牧 銳夫・橋本 春吉・鎌田 健

アセナフテンよりナフタル酸及び無水ナフタル酸を経て、ナフタルイミドが酸化で得られることは、既に第1報1）において報告した。著者等はこれより優秀なアセナフテン染料の半間成なるナフトスチリル（Ⅰ）及びアンサンスロン（Ⅱ）の合成を研究した。ナフトスチリル生成の主催者は、Hoffmann反応の適用であり、ナフトルイミドのナトリウム塩（1）に、アルカリ性過酸化ナトリウムを作用させる。反応生成物はアセナフテンの場合に類似すると考えられる。

\[
\begin{align*}
(1) & \quad \text{CO} + \text{H}_2\text{O} + \text{CH}_3\text{COONa} \\
& \quad \rightarrow \quad \text{COONa} + \text{NaCl} + \text{Na}_2\text{CO}_3
\end{align*}
\]

これにケトンを加えて煮沸すると、環化したナフトスチリルを沈澱する。
\[
\begin{align*}
\text{COONa} + \text{CH}_3\text{COOH} & \rightarrow \nonumber \\
\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} & \quad \text{（2）}
\end{align*}
\]

（東京大学工学部応用化学学科研究室）（昭和27年1月19日受理）

（230）アセナフテン系染料の合成に関する研究（第3報）

ナフトルイミドよりナフトスチリル及びアンサンスロンの合成

牧 銳夫・橋本 春吉・鎌田 健

アセナフテンよりナフタル酸及び無水ナフタル酸を経て、ナフタルイミドが酸化で得られることは、既に第1報1）において報告した。著者等はこれより優秀なアセナフテン染料の半間成なるナフトスチリル（Ⅰ）及びアンサンスロン（Ⅱ）の合成を研究した。ナフトスチリル生成の主催者は、Hoffmann反応の適用であり、ナフトルイミドのナトリウム塩（1）に、アルカリ性過酸化ナトリウムを作用させる。反応生成物はアセナフテンの場合に類似すると考えられる。

\[
\begin{align*}
(1) & \quad \text{CO} + \text{H}_2\text{O} + \text{CH}_3\text{COONa} \\
& \quad \rightarrow \quad \text{COONa} + \text{NaCl} + \text{Na}_2\text{CO}_3
\end{align*}
\]

これにケトンを加えて煮沸すると、環化したナフトスチリルを沈澱する。
\[
\begin{align*}
\text{COONa} + \text{CH}_3\text{COOH} & \rightarrow \nonumber \\
\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} & \quad \text{（2）}
\end{align*}
\]
来の文献に見ない好収率を挙げることが出来た。

ナフストリルは四性ソーダ（10% NaOH）と加熱すると、容易に定量的に酸化して1-アミノナフタリン-8-カルボン酸ソーダになり、室温以下で塩酸を加えるとアミノ・カルボン酸のHCl塩を95%以上の収率で析出すことを認めたが、アンサンプソン合成の如くジオゾ化に用いるには、別にこの段階で分離する必要はない。

ナフストリル（II）からアンサンプソン（V）の合成を、初段階的に検討したが、最も問題となったジオゾ反応で1,1'-ジナフタリル-8,8'-ジカルボン酸（IV）とする時であり、これより濃硫酸酸化（100℃）でアンサンプソンを得る段階は殆ど100%収率で行われる事を知った。ナフストリルを加熱し、ジオゾ反応でジナフタリル・カルボン酸とするのに、文献の如く、硫酸銅のアンモニア溶液にSO₃をを通して製した酸化第一級アンモニア溶液を用いる方法では、如何に条件を変えても理論の56%以上のアンサンプソンを得ることは不可能であった。副生として1-オキシナフタリン-8-カルボン酸（融点169℃）に相当するものが認められた。これらの除いて最後段階（V）において行うのが、操作上得である。

著者等は上記ジオゾ反応の後に、硫酸銅2モル比から作製した第一級アンモニア溶液に、1モル比の溶媒金属塩溶液を添加する新法を試み、今迄未だ観察されなかったことを示した。またアンサンプソンの融点は、文献の如く、単に300℃以上であるが、著者等はノトペンソールから再結晶した酸鉄状結晶は融点415℃（補）なることを見出した。

実験の部

【1】ナフストリル（II）ナフタールイミド2.86g（1mol比）を粉末し、水237cc（イミドの24倍）、四性ソーダ（89.9%）6.69g（3mol比）と懸濁し加熱し、85℃で溶解させ、一度鎮静して15℃まで冷却、析出する針状結晶を懸濁しながら硫酸重酸ソーダ液（17中NaClO 116g, NaOH 62.4g. 96.3cc（理論の3.00倍）を滴下、加熱して40分で25℃に上げ、この温度で3時間懸濁、次いで1時間で70℃に上げ、同温度に1時間反応させる。溶液は褐色を帯びて場合透明となる。沃化カリウム粉を用いて残存NaClOを重酸硫酸ソーダ液（30g SO₃/l）で中和、一夜放置後澱粉する。不溶物は水及びナフタールイミドで中性に洗い、110℃で乾燥0.18g（1.82%）。

4) D. R. P. 445, 390 (Casella) ; Frd. 15, 300.
5) Kalb, Ber. 47, 1728 (1914).

液に氷醋酸20ccを加えて塩酸性とし、流し冷却下、石英鉄網上で、1時間煮沸してスチル化を完成させ、冷却、濁別し20ccの液を水で150ccとし、煮沸水浴上30分加熱すると不溶物はナフストリルで、水洗後110℃乾燥るもの3.53g。液は塩酸性としてナフタール酸を析出、水洗、塩酸を加熱して2.63g。上記塩酸性溶液は約1/4に濃縮、煮沸すると更にナフタリル及びナフタール酸を析出する。これを塩酸ソーダ水（1:50）100ccで同様に分離すると、ナフストリル1.02g、ナフタール酸0.94gを得る。回収ナフタール酸合計3.57g、対理論34.9%、ナフストリル合計4.55g、見掛け収率56.5%、未反応イミド及び回収ナフタール酸を差し引くと、未反応理論の89.7%なる。黄色結晶性粉末、融点173～175℃（未補）、175.5～177.5℃（補）である。このナフストリルは熱にありたり純粋で、25%アルコール50倍量を用いて再結すると融点177～178℃（未補）、179.5～180.5℃（補）の黄色針状結晶となる。

第1図

備考（A）NaClOは3モル比の理論の3倍が最も良。酸化が過ぎるとナフタール酸が増える（曲線参照）。

備考（B）反応の主部は塩態近傍で行われる。上と同条件で25℃に8時間懸濁し、後加熱せずにともステリル見掛50.0%,ナフタール酸36.8%,未反応イミド1.19%であり、また別に16℃に8時間ののみとしてもステリル見掛52.2%,ナフタール酸34.1%,未反応イミド5.37%であった。

備考（C）NaClO 3モルを4回にわけ、2時間ずつ加熱して25℃で加熱すると、ステリル見掛38.3%に下り、ナフタール酸25.9%で、未反応イミド49.9%にも上った。70℃で4回にわけて加熱しても、ステリル見掛36.8%、ナフタール酸25.3%、未反応イミド32.8%で値悪。NaClOは最初から相当の濃度をもたせた方が良い。

備考（D）最初ナフタールイミドに加えるNaOHが2莫比の時は、他に同条件でも、ステリル見掛50.1%、ナフタール酸16.8%、イミド16.2%で未反応がやや多くなる。

備考（E）NaClO反応後、氷塩酸を加えて加熱する時、直火によらず水浴上で行うと、スチル化幾分不充分で2～3%見掛
収率が低く、それだけソーダに溶けてナフタール酸の方へ入つて行く。

備考（F） アルカリ性亜塩酸ソーダは

\[3 \text{NaOH} + \text{C}_2\text{H}_5\text{Cl} = \text{NaClO}_2 + \text{NaCl} + \text{H}_2\text{O} + \text{NaOH} \]

により、例えば NaOH 純分として 40 g を水 215 cc にとかし、塩酸每百 100 cc、液温 0〜5℃で、重量增加 23.6 g まで収吸させる。

【2】 アンサンスロン（V） 吐酸スチール 3.38 g（1 モル比）を 10% NaOH 20 g（理論の 2.5 倍）と煮沸水浴上で 1 時間加熱溶解させる（開壊してアンミン・カルボン酸ソーダとなる）。冷後して水 80 cc でうすめ、HCl（4 N）4 cc を加えてアルカリ性を一部中和する。溶液で -5℃に冷却し、酸性ソーダ（99%）1.39 g（1 モル比）を水 8 cc に溶かして加え、撹拌下、予め冷水した HCl（4 N）23.4 cc を添加、-3〜0℃の間で 30 分ジアノ化を行う。橙色のジアソウム塩が析出する（上の HCl 使用量は NaOH を中和して需する 3 モル比）。別に予め酸性（CuSO\(_4\cdot5\)H\(_2\)O）10 g（2 モル比）を水 40 cc に溶かし、25% NH\(_3\) 水 48 cc を加えた液に、冷水下 SO\(_3\)を通過し脱色し各分離ガラスに含まない酸化第一鉄アンモニア液を次に加え（備考 I 参照）、-3℃に冷却、撹拌下上のジアソウム塩を析出、0〜3℃に 5 時間撹拌する。はじめの発泡は約 40 分で止み、液は褐色から暗青色となり、鋼粉は全く溶解して去る。適調した鋼粉を塩酸性とすると、1,1'-ジナフタール-8,8'-ジカルボン酸（IV）を沈殿する。銅別、水洗、110℃乾燥品収量 2.68 g、褐色粉末である。

この粉末を 5 倍重量の塩酸酸と蒸発水浴上で 1 時間加熱、処理する。初め赤褐色の液は直ちに漂白になる。冷却後 100 倍の水に入れ、洗浄を水洗後、5% Na\(_2\)CO\(_3\) 100 cc と加熱、銅別して亜硫酸カリを除き、水洗、110℃乾燥する。精製アンサンスロン（V）収量 2.08 g、理論の 68.0% である。アンサンスロンは褐色粉末を 80 倍のメチルペンソールより再結晶し黄緑微針状結晶となり、融点 415℃（補）。硫酸銅に混合後に塩水で塩酸洗浄、偏析は容易である。I K 法も最もよく、木綿をあまり漂白ならず色濃厚で染める。自身工業用染料としては使用されないが、数種堅牢染料の原料となる。

備考（G） 上のジアソ反応で金属銅を添加しないと、アンサンスロン収率は 55.6% に止まる。また金属銅を加えないで、3 モル比の第一鉄アンモニア液、加熱上的 1.5 倍を用いると、アンサンスロンは 20.9% まで下る。

備考（H） 金属銅の比率及びアンモニアの全量も相当の影響を与える。

<table>
<thead>
<tr>
<th>第一鉄アンモニア用</th>
<th>硫酸銅</th>
<th>水</th>
<th>25%NH₃</th>
<th>NH₃</th>
<th>金属銅</th>
<th>アンサンスロン収率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g) (mol比)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(mol比)</td>
</tr>
<tr>
<td>10.2 40.48</td>
<td>20</td>
<td>0.64</td>
<td>0.5</td>
<td>60.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2 40.48</td>
<td>20</td>
<td>1.27</td>
<td>1</td>
<td>68.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2 40.48</td>
<td>40</td>
<td>1.27</td>
<td>1</td>
<td>62.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 1 20 24</td>
<td>10</td>
<td>1.27</td>
<td>1</td>
<td>30.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考（I） 濃塩酸金属銅粉は次の如くして製する。

硫酸鋼 (CuSO\(_4\cdot5\)H\(_2\)O) 5 g を水 30 cc と混ぜて溶かし、常温まで冷却、別に水 1.6 cc、エーテル 0.5 cc、二酸化炭素 1.56 g を均一に混ぜ合わせたものをこれに加える。金属銅粉が析出して液温は上昇する。放置して上澄を傾け去り、一度洗浄後、水と僅かの塩酸を以てアソニウムの底を洗去し、冷よく傾け去り水洗を行って中性となし、上の合液の場合には氯化をそのまま用いる。他の場合、乾燥銅粉を必要とする時には、スケルマをかやや大にして同様に作製、澄別して亜硝酸で真空乾燥する。

（昭和26.4.8、日化第4年会講演）

附記 本研究に対し文部省科学研究費並に日本学術振興会第116委員会の研究費が支給された。ここに謝意を表する。

(松下電工株式会社・大阪市立大学理工学部高分子化学教室)（昭和27年1月21日受理）

(231) アミリン樹脂に関する研究 (第6報)¹)

塩酸性アミリン・ホルマリン樹脂の構造について

野田 美芳・井本 稔

塩酸性アミリン・ホルマリン樹脂の構造については K. Frey²の報文があり、式 [1] に示す如き構造式が著者採用されている。我々は第 1 報に於て、アルフーラル＝アミリン樹脂³を、又井本・丹野氏のアミリン・ホルマリン樹脂⁴の実験から式 [1] に対し疑問を呈するのである。次報に於いて二酸体を単離し、これが 4,4'＝アミノ＝フェニルメタンなる事は確証し、

1) 井本, 深尾, 工化 50, 11 (第1報), 12 (第2報), 13 (第3報), 132 (第4報), 133 (第5報) (1947).
3) 丹野凉一, 井本, 棟, 高分子化学 7, 415 (1930).

従つてアミン基＝NH₂は遊離して存在する事を知つた。本報告に於ては逐次の如き反応物の構造を推定させると、塩酸アミリンおよびそれを水蒸気蒸溜した樹脂について分子量を測定すると共に、テアゾ化、アセチル化をしてNH₂の数、その性質を検討し、アミリン樹脂に対して新しい知見を与えようとするものである。

実験の部

アミリン・ホルマリン樹脂の生成 塩酸 1 M, アミリン 1 M をとり、塩酸アミリンを作り水で 1,000 cc にうすめる。別個の容器にホルマリンをとり 1,000 cc となし前容器に満涂しながら滴下、温