1. 緒 言

今日迄写真用安定剤として発表された有機化合物は非常に多数に上っている。これら安定剤として有効であると考えられている化合物は、その分子中に活性基を一つ以上含んでいるのが普通であり、この活性基とは、一例を挙げるとメルカプト基、ヒドロキシル基、カルボキシル基、イミダゾール基などの配列を指しているのである。筆者等は今回、活性基としてメルカプト基、ヒドロキシル基、イミダゾール基を持つフェニルテトラゾール系化合物を数種類合成し、乳剤試験を行った。そこで上記化合物の写真乳剤に及ぼす影響について報告する。

2. 実 験 試 料

(Ⅰ) 1-フェニル-5-メルカプトテトラゾール

\[
\begin{align*}
\text{HS} & - \text{C} - \text{N} \begin{array}{c}
\text{C} - \text{NH}
\end{array} \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 47.19% H: 3.37%)
実測値 (C: 47.34% H: 3.28%)
Fp: 152°C

(Ⅱ) 1-アリル-5-メルカプトテトラゾール

\[
\begin{align*}
\text{HS} & - \text{C} - \text{N} - \text{C}_6\text{H}_5 \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 33.79% H: 4.26%)
実測値 (C: 33.62% H: 4.45%)
Fp: 67°C

(Ⅲ) 1-フェニル-5-スルホテトラゾリン

\[
\begin{align*}
\text{H} & - \text{N} \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 47.19% H: 3.37%)
実測値 (C: 47.30% H: 3.08%)
Fp: 142°C

(Ⅳ) 1-フェニルテトラゾール

\[
\begin{align*}
\text{H} & - \text{N} \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 57.52% H: 4.14%)
実測値 (C: 57.70% H: 3.86%)
Fp: 66°C

(Ⅴ) 1-フェニル-5-ヒドロキシテトラゾール

\[
\begin{align*}
\text{HO} & - \text{C} - \text{N} \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 51.85% H: 3.70%)
実測値 (C: 51.26% H: 3.43%)
Fp: 189°C

(Ⅵ) 5-フェニルテトラゾール

\[
\begin{align*}
\text{C} & - \text{NH} \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 57.53% H: 4.11%)
実測値 (C: 58.08% H: 3.76%)
Fp: 218°C

3. 実 験 方 法

使用乳剤：中性法乳剤。
添加量：硝酸銀に対して10⁻⁵M、10⁻⁴M、5×10⁻⁴M。
添加方法：第2試成分を前添加。

4. 実 験 結 果

その1. 中性法乳剤

(Ⅴ) 5-パラトリテトラゾール

\[
\begin{align*}
\text{CH}_3 & - \text{N} - \text{C} - \text{NH} \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 60.00% H: 5.00%)
実測値 (C: 59.89% H: 4.53%)
Fp: 244°C

(Ⅵ) 5-メタノトロフェニルテトラゾール

\[
\begin{align*}
\text{NO}_2 & - \text{N} - \text{C} - \text{NH} \\
\text{N} & - \\
\end{align*}
\]

理論値 (C: 41.38% H: 3.14%)
実測値 (C: 41.42% H: 3.18%)
Fp: 108°C（結晶水を含む）
(10⁻⁵M) では、殆ど感光度に影響を与えない、カプリを抑制し、良好なカプリ抑制効果を示す。更に添加量を増やすと（10⁻⁴M 以上）カプリ反応に対する抑制作用も強くなるが、同時に感光度を著しく低下させてしまう（第 1 図）。

（ロ） 上記化合物のフェニル基の代わりにアリル基を持った 1-アリル-5-メルカプトテトラゾールは、10⁻⁵M 添加では乳液に対して特別な作用を及ぼす事はないが、10⁻⁴M 添加の場合は、カプリを与え、付着感を示す。しかしながら、これよりもやや添加量を増すと（5×10⁻⁴M）カプリ抑制と共に著しい感度抑制が見られる。

（ハ） 1-フェニル-5-メルカプトテトラゾールの異性体と考えられている 1-フェニル-5-スルホネテトラゾールは、1-フェニル

第 2 図 中性法乳剤

第 3 図 中性法乳剤

第 4 図 アンモニア法乳剤

第 5 図 アンモニア法乳剤

-5-メルカプトテトラゾールに比べてやや強い感度抑制作用を持っているが、殆どと類似的写真的性質を持ちます。

（ニ） 分子中に OH 基を持った 1-フェニル-5-ヒドロキシテトラゾール、並びに活性基を含まない 1-フェニルテトラゾール等は、10⁻⁵〜5×10⁻⁴M 程度の添加量では、特別な写真的効果を示さない（第 2 図）。

（ホ） 1-フェニル-5-メルカプトテトラゾール基化合物、例えば 5-フェニルテトラゾールを始めとして、5-(メタノテフニル) テトラゾール、5-(メタノテフニル) テトラゾール等、一般に少量添加（10⁻⁴M）でカプリ抑制作用を示し、しかも感光度に対する影響は殆ど無視出来る程度である。そして、この傾向は、5×10⁻⁴M 級添加量を増しても変化する事はない。

即ち、比較的短時間に亘る添加量で良好なカプリ抑制作用を観
持する事が出来る（第3, 4 図）。

その 2. アンモニア法乳剤

（イ） 1-フェニル-5-メルカプトテトラゾールは、少量添加で
（10⁻³ M）ややカルバリーな傾向があり、10⁻⁴ M 以上の添加量
ではカルバリー抑制作用を示し、有効な影響を示す（第 5 図）。

（ロ） 1-アリル-5-メルカプトテトラゾールは、少量添加で上
記同様カルバリーを示し、高浸透力（10⁻⁴ M) 添加すると、著しい抑制乗
用と共にカルバリー抑制作用を示す。

（ハ） 1-フェニル-5-メルカプトテトラゾールは、少量添加ではカ
ルバリを示し、高浸透力で示して著しい抑制作用と共にカルバリー抑制作用
を示す傾向がある。

（ニ） 1-フェニル-5-ヒドロキシテトラゾール、1-フェニルテ
トラゾール、中性乳剤で抑制作用を示されなかったが、有効な
アンモニア法乳剤においても特異的抑制作用が見られなかった（第 6 図）。

第 6 図 アンモニア法乳剤

第 7 図 アンモニア法乳剤

5. 結 論

以上の実験結果から一応次の如く結論づける事が出来るものと
考える。

（I） フェニルテトラゾール系化合物は、中性乳剤ではカルバ
リー抑制作用として効果が認められる。しかしそう、アンモニア法乳
剤では効果的発現は望まなかった。

（II） フェニルテトラゾール系化合物の中性乳剤で見られる
カルバリー抑制作用は、該化合物の分子中に含まれたメルカプ
ト基、ヒドロキシ基などの発現が、該化合物の各部位の効果
に関しては、より高浸透力（10⁻³ M 以上）の添加試験を行わない
限り結論づける事は困難である。

（IV） 次表は主なフェニルテトラゾール系化合物の乳剤に関する
データである。

<table>
<thead>
<tr>
<th>対照試験</th>
<th>熱成時間 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>貫水</td>
<td>10⁻³ M</td>
</tr>
<tr>
<td>貫水</td>
<td>10⁻⁴ M</td>
</tr>
</tbody>
</table>

（ホ） 5-フェニルテトラゾール、5-（パラトリル）テトラゾール
5-（メタノイドフェニル）テトラゾール等、少量添加では
特殊な写真記在作用はなく、浸透力（10⁻³ M) 添加で著しい抑制作用
の低下と共にカルバリー抑制作用を示す（第 7 図）。

<table>
<thead>
<tr>
<th>熱成時間 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>貫水</td>
</tr>
<tr>
<td>貫水</td>
</tr>
</tbody>
</table>

銀塩の溶解度

AgBr < AgZ < AgCl

5-フェニルテトラゾール

銀との結合比

1 : 7.5

銀塩の溶解度

AgZ = AgCl

1-フェニル-5-ヒドロキシテトラゾール

銀との結合比

1 : 1

銀塩の溶解度

AgZ > AgCl

上記のように、中性乳剤でカルバリー抑制作用として有効であっ
た 1-フェニル-5-メルカプトテトラゾールと 5-フェニルテトラゾール
板、重炭酸ソーダメジウムの時よりも、炭酸ソーダメジウムの
場合、より高浸透力（10⁻³ M) を使用の為に必要とすると言う事
が判る。特に 5-フェニルテトラゾールは炭酸ソーダメジウムの
時に、銀 7.5 M を使用の為に必要であるが、これは恐らく
5-フェニルテトラゾールが銀を抽出としてアルカリ性で分解
し、その分解生成物が銀を消費する為ではないかと考え
られる。1-フェニル-5-メルカプトテトラゾールは、炭酸ソーダ
メジウムで銀 2 M となっているが、恐らく的銀塩とは考えられ
ず、上記同様アルカリ性が強くなると分解し易くなる為であ
らうと考えられている。

附記、活性基を持ったフェニルテトラゾール系化合物がアンモ
ニア法乳剤で意外な結果を示したのは、この様性質に基づくも
のと考えられる。上記三者の中で最も安定な銀塩を形成する
1-フェニル-5-ヒドロキシテトラゾールが、アンモニア法乳剤でも
無効であるのは、この化合物の銀塩が AgCl に比べ、より大
きい溶解度を持っており、従って正常な添加量では安定剤たり得
ないのであろう。

最後に本実験に協力を戴いた分析担当の鈴木清司氏、乳剤テス
ト担当の青木万芳氏に謝意を表する。