アミノン石鹸液の伝導度はそれらと大きな相違はない。
第1項の各曲線の傾きから、それぞれの石鹸の臨界ミセル濃度を求めることができる。その値は後記示薬法で測定したものとよく一致する。

臨界ミセル濃度 cMC 一般に cMC は温度による差は僅少であるが、測定の方法によって若干の差を示す場合がある。トルエンプルス法を用いて15〜18℃で求めたアミノン石鹸の cMC は第 5 表に示す如くで、対応するアルカリ石鹸よりもかくに低い。これらの値の中アルカリ石鹸については、種々の方法で求められた公知の値（括弧内はその例）とよく一致する。またこれらの値の中 GL については単記電気伝導度曲線から求めた 1.5×10⁻² M/l とよく一致する。トルエンプルス法を適用しにくい GP 及び GS の cMC は伝導曲線からそれぞれ 6.9×10⁻³ M/l (NaP 1.5×10⁻³ M/l)、4.0×10⁻³ M/l (NaS 8×10⁻³ M/l) として与えられる。ただ GP はアルカリ石鹸に比較して共成り低い値を示している。

第 5 表 ラウリン酸塩及びオレイン酸塩の
臨界ミセル濃度

<table>
<thead>
<tr>
<th>GL</th>
<th>1.7〜1.8×10⁻² M/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL</td>
<td>2.4〜2.5×10⁻² M/l (2.3〜2.4×10⁻² N, 25.8℃)</td>
</tr>
<tr>
<td>NaL</td>
<td>2.3〜2.4×10⁻² M/l (2.4×10⁻² N, 17〜20℃)</td>
</tr>
<tr>
<td>GO</td>
<td>6.5〜7.5×10⁻⁴ M/l</td>
</tr>
<tr>
<td>KO</td>
<td>9.5〜10.0×10⁻⁴ M/l (7〜12×10⁻⁴ N, 25.8℃)</td>
</tr>
<tr>
<td>NaO</td>
<td>9.5〜10.0×10⁻⁴ M/l (20℃)</td>
</tr>
</tbody>
</table>

1.5℃ と 60℃ とで密度法により求めた結果 (Na 及び K 塩の密度は公知なので実測した表面張力の数値を省略する) は、Na, K, G 塩の中 G 塩が若干活性の高い場合もあるが、同

4) 立花、大澤、日化 72, 586 (1981).

一脂肪酸について概して Na 塩が最も最大活性を示すが、三者とも大差がない。
20℃ では ラウリン酸塩: G > Na > K、ペルミット : G > Na > K、オレノ酸塩: Na > K、G.
60℃ では ラウリン酸塩: Na > K > G、ペルミット: Na > K > G、オレノ酸塩: G > Na > K、G。
なお G 塩も Na, K 塩と同様、その表面張力は概ね 0.1〜0.4%の間で極小を示す。また供試脂肪酸 G 塩中 60℃ でパルミット酸が最大活性を示することは、アルカリ石鹸の場合と同じである。

殺菌性 腦膜球菌 209 p. 枯草菌及び CoI 大腸菌について少量の石鹸の添加により 37℃ で 16 時間後の菌の発育状況（奥天塗抹法）は 3 塩に対し、4 種のアミノン石鹸中 GL だけは 2 mg/cc 以上の濃度 (大腸菌は 4 mg/cc) で発育を阻止し、他のは 1 倍。この実験では対照とした NaL と同様に殆ど無効に近い結果を示した。

総 括

ラウリン酸、ペルミット酸、オレイン酸、及びオレイン酸のアミノン石鹸は融点がいずれも 100℃以上で極めて低く、水及び有機溶剤に対する溶解度が比較的高く、相当の殺菌力を示すものの (ラウリン酸) があるほか、pH, 加水分解度、臨界ミセル濃度、電気伝導度、表面張力においてアルカリ石鹸に類似した性質をもっている。乾燥物の熱安定性は低くなく、吸湿性は Na 塩よりも小さい。

（昭和 29 年 11 月、日化東海支社大会講演）
殺菌力実験を実施された川崎化学株式会社研究部に深謝する。

（大阪市立工業研究所 : 大阪市北区）（昭和 28 年 12 月 29 日受理）

（153）ナフタリンの硝化反応温度と β-異性体生長との関係

池 上 尚・橿山 八郎

I. 緒 言

先に α-及び β-ニトロナフタリンの共融曲線を作成し、この曲線を利用してナフタリン硝化の際に生じる β-ニトロナフタリン量を求めた。その後入手した文献によれば、Fierzi-David 等はナフタリン硝化生成物よりニトロナフタリンを分離し、蒸発精製後混ぜ、更に真空蒸発を行い、このアセチル化合物の酸化に対する溶解度の差を利用して β-アトロナフタリンを分離し、ナフタリンを硝化する際には β-異性体生長する事を証明している。同時に α-及び β-ニトロナフタリンの共融曲線を作成して種々の硝化法による β-異性体生長を求める。しかし硝化反応温度の影響は不明であり、且つ著者等が作成した共融曲線と比較して α-ニトロナフタリン側が低融点である。

1) 池上, 天野, 翔田, 楓山, 工化 55, 576 (1952)。

先に著者等は 35℃ で混酸中にナフタリンを添加し、後所定の温度に上昇させ反応を行った場合に生成する β-異性体の量について報告したが、今回は反応開始時より一定温度で硝化を行い、生成する β-異性体量を求めた。

II. 実験結果及び考察

精製ナフタリンを三つのイソラスコ中で所定反応温度より約 5℃ 低い温度に加温加圧し、脱炭（D. V. S.）一定の混酸を反応温度を維持する様に滴下して後、同温度で 2 時間放置して反応を続けた。用いた混酸の D. V. S. は 1.0 及び 2.0。ジェット化合物の生成を防ぐ為に Nitric ratio を 0.8 とした。反応終了後、生成物を分離し、多量の蒸発を蒸発して酸分を除き、次に 5% の硫酸メタノールで充分に洗浄、更に水蒸気蒸発を行って未反応ナフタリンの大部を除去し、乾燥後減圧蒸発を行った。減圧蒸発を行う場合、α-体と β-体とが分離される事も考え
三枝・野崎・小田：ポリラジカルによる重合反応（第2報）

一つのD.V.S.の混雑でナフタリンの酸化を行い、副生するβ-ナフタリン酸の反応温度とβ-異性体生成量との関係を考察した。70℃以上では急にβ-異性体生成量が反応温度に比例して増大した。又D.V.S.2.0の場合には1.0の場合より速く反応温度においてもβ-異性体生成量が約1%多くなる事を認めめた。

昭和28年12月2日、近畿地方工業研究機関第1回合同研究発表会講演

（京都大学工学部工業化学教室：京都府京都市）

（154）ポリラジカルによる重合反応（第2報）

ポリラジカル酸パーエステルによるビニルモノマーの重合

三枝 武夫・野崎 正士・小田 良平

最近所謂 "Graft-copolymer" の生成に関する多くの研究がなされているが、そのいずれの場合においても、活性ラジカルとポリマーとの間の連鎖移動によって、ポリマー主鎖の変形原子に生じたラジカルより第2のビニルモノマーの加水分解を用いてある。我々は、かかる方法ではなく、先ず熱分解によってポリラジカルを生成する様々なポリマーを合成し、それを重合開始剤に用いて他種ビニルモノマーの重合を行った。

\[
\begin{align*}
\text{CH}_3 \quad & \text{PCls} \quad \text{CH}_2 \quad (\text{CH}_3)_2\text{COOH} \quad \text{CH}_2 \\
\text{CH-COOC}_2 \text{H}_2 \quad \text{in CH}_2 \text{CH-COCI} \quad & \quad \text{CH-COOOC(CH}_3)_2 \\
\text{熱分解} \quad & \quad \text{CH}_3 \quad \rightarrow \quad \text{CO}_2 \quad \text{CH}_3\pi(\text{CH}_2=\text{CHX}) \quad \text{CH}_3 \\
& \quad \text{CH-〜ビニルモノマー} \quad \text{CH-(CH}_2\text{CH}_2)_n
\end{align*}
\]

1) Houtz and Adkins, J. Am. Chem. Soc. 55, 1609 (1933); Carlin and Shakespeare, ibid. 68, 870 (1946);
Smetz, et al., J. Polymer Sci. 8, 289 (1952)
Roland, et al., ibid. 9, 61 (1952); Mark, Textile Research J. 23, 294 (1953).

2) 三枝、野崎、小田、工化 57, 243 (1954).