ヘキサクロロジメチレンのアルキルおよびアルコキシン誘導体の合成とその加水分解生成物
ならびにベンタメチルモノクロロジメチレンの二、三の誘導体の合成†

昭和31年4月27日受理

樋沢 恭・野地本栄治

緒 言

現在実用され最も広く研究されつつある有機ケイ素重合物は、
-Si-O-Si- のシクロキサン結合を有する重合物であるが、それ以外
の骨格を有する重合物の研究もまた主として米国で行われてい
る。これらの新型の骨格の内に安定な結合で工業的であり
重要であると思われる結合の一つは、-Si-CH₂-Si- のジンジルメチ
レン結合を持つ化合物である。この結合を持つ化合物は、Somme-
er(2)、Bluestein(3)、Goodwin Jr.(3) により合成されているが工
程は長くあるいは金属ナトリウムを使用し、経済的な方法とはい
い難しい。著者らは塩化メチルと塩素をケイ素に反応させ、メチル
トリクロルシランを好収率で得るにとどり、かなりの量のヘキサ
クロロジメチレンを用いる方法を発表したい。この化合物を出
発原料として、工業的にも有利にジンジルメチレン結合を用いる
可能性に着目し、ヘキサクロロジメチレンおよびそのアルコキシン誘導体よりその
アルコキシン誘導体を合成し、これを加水分解したジンジルメチレン重合物をう
る新合成法を見出した。さらにベンタメチルモノクロロジメチレン、または
モノアルコキシンジメチレンの二、三の新誘導体を合成したので報告をする。

第1表 ヘキサクロロジメチレンのメチル誘導体

<table>
<thead>
<tr>
<th>No.</th>
<th>化 合 物</th>
<th>溶 点 (°C)</th>
<th>酸素 (%)</th>
<th>理論</th>
<th>実測</th>
<th>分子量(ge)</th>
<th>理論</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl₂SiCH₂Cl₂</td>
<td>184</td>
<td>184–185(2)</td>
<td>75.25</td>
<td>75.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Me₂SiCH₂Cl₂</td>
<td>185</td>
<td>-</td>
<td>67.60</td>
<td>67.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Me₂SiCH₂Me</td>
<td>189–191</td>
<td>-</td>
<td>57.65</td>
<td>58.59</td>
<td>1.469</td>
<td>1.30</td>
</tr>
<tr>
<td>4</td>
<td>Me₂SiCl₃</td>
<td>176</td>
<td>-</td>
<td>58.00</td>
<td>58.59</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Me₃SiCl₂</td>
<td>186</td>
<td>186(2)</td>
<td>48.30</td>
<td>48.01</td>
<td>1.463</td>
<td>1.16</td>
</tr>
<tr>
<td>6</td>
<td>Me₃SiCl₄</td>
<td>-</td>
<td>105.6(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Me₃SiCl₂</td>
<td>174–176</td>
<td>174.5–5.8(4)</td>
<td>35.72</td>
<td>35.25</td>
<td>1.448</td>
<td>1.095</td>
</tr>
<tr>
<td>8</td>
<td>Me₃SiCl₃</td>
<td>164–166</td>
<td>166(4)</td>
<td>33.46</td>
<td>33.25</td>
<td>1.400</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>Me₃SiCl₄</td>
<td>154–155</td>
<td>154.5(4)</td>
<td>19.72</td>
<td>19.61</td>
<td>1.432</td>
<td>0.846</td>
</tr>
<tr>
<td>10</td>
<td>Me₃SiCl₅</td>
<td>133</td>
<td>134(0)</td>
<td>0</td>
<td>0</td>
<td>1.417</td>
<td>0.789</td>
</tr>
</tbody>
</table>

† 本報を「シルメチレン系有機ケイ素化合物に関する研究（第1報）」とする。

* 住友化学工業株式会社大阪製造所：大阪市北区花

2) B.A. Bluestein, ibid. 70, 3086 (1948).
4) 樋沢、野地本、日本特許 188, 609; 198, 383.
5) 樋沢、野地本、日本特許 203, 600; 199, 519; 199, 520.

II. ヘキサアルコキシンジメチレンの合成(12)

ヘキサクロロジメチレンにアルコールを作用させてヘキサ
アルコキシンジメチレン合成の生成物は第3表のとおり
でいずれも無色透明の液体で水により加水分解し、シリカよう
粉末ないしはガラスのような重合物となる。

11) 昭和26年4月8日、昭24年4月4日、講演
12) 樋沢、野地本、日本特許 188, 637.
第3表 ヘキサアルコキシジメチレン

<table>
<thead>
<tr>
<th>化合物</th>
<th>温度 (℃)</th>
<th>SI (%)</th>
<th>nD</th>
<th>d2</th>
<th>分子量 (g/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MeO)2Si(CH3)2(OH)2</td>
<td>100〜110</td>
<td>11.96</td>
<td>1.4006</td>
<td>110.18</td>
<td>110.20</td>
</tr>
<tr>
<td>(MeO)2Si(CH3)2(OH)2</td>
<td>100〜110</td>
<td>11.96</td>
<td>1.4006</td>
<td>110.18</td>
<td>110.20</td>
</tr>
</tbody>
</table>

第4表 メチル置換ヘキサアルコキシジメチレン

<table>
<thead>
<tr>
<th>化合物</th>
<th>温度 (℃)</th>
<th>分子量 (g/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (MeO)2Si(CH3)2(OH)2</td>
<td>100〜110</td>
<td>110.18</td>
</tr>
<tr>
<td>2 (MeO)2Si(CH3)2(OH)2</td>
<td>100〜110</td>
<td>110.18</td>
</tr>
</tbody>
</table>

第5表 ヘキサアルコキシジメチレンの加水分解反応

<table>
<thead>
<tr>
<th>化合物</th>
<th>反応条件</th>
<th>グルオール</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCl2SiCH2SiCl2</td>
<td>250℃</td>
<td>1モル</td>
</tr>
<tr>
<td>MeCl2SiCH2SiMe2Cl2</td>
<td>250℃</td>
<td>1モル</td>
</tr>
</tbody>
</table>

第6表 メチル置換アルコキシジメチレンの加水分解反応

<table>
<thead>
<tr>
<th>化合物</th>
<th>反応条件</th>
<th>グルオール</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCl2SiCH2SiCl2</td>
<td>250℃</td>
<td>1モル</td>
</tr>
<tr>
<td>MeCl2SiCH2SiMe2Cl2</td>
<td>250℃</td>
<td>1モル</td>
</tr>
</tbody>
</table>

第7表 メチルアルコキシジメチレン重合と加熱変化

<table>
<thead>
<tr>
<th>化合物</th>
<th>温度 (℃)</th>
<th>反発性ガス</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCl2SiCH2SiCl2</td>
<td>250℃</td>
<td>1モル</td>
</tr>
</tbody>
</table>

III. メチルアルコキシジメチレンの合成

ヘキサアルコキシジメチレンにメタノールマグネシウム溶液を作用させ、1-ないし6-メチル置換体を合成した。6-メチル置換体は、ヘキサアルコキシジメチレンの加水分解と総合によりヘキサアルコキシジメチレンの合成が可能である。
実験の部

I-（1） ClSiCH₂SiCl₆

原料ヘキサクロロシランメチルを還元塩と高張度のケイ素に反応させ、メチルトトリクロロメチルを含む液体を高真空留分をフィルタマシン精留塔を用いて2回蒸留し、180〜184℃の留分を得た。さらに1 mのボットリュック方式精留塔を用いて分留し、184℃の留分はCl₂ = 75.25%（75.18%）である。

I-（2） Me₂SiCH₂SiMe₃

ヘキサシクロメチルメチレン 270 g (0.955 mol) およびエーテル 500 cc との混合物に 2.41 N のメチルマグネシウムアセチル溶液 1.05 mol と反応させ、3 時間保持、反応後析出、ローションエーテルを回収し、2 m のボットリュック方式精留塔を用いて分留し、184℃の留分を Cl₂ = 75.25%（75.18%）と分析した。

I-（3） Me₂SiCH₂SiMe₃

ヘキサシクロメチルメチレン 1.5 mol およびエーテル 600 cc との混合物にメチルマグネシウムアセチル物質3.2 mol を反応させ、bp 189〜191℃の留分 116 g をえた。収率 67%。

I-（4） Me₂SiCH₂SiMe₃

ヘキサシクロメチルメチレン 0.5 mol およびエーテル 400 cc の混合液にメチルマグネシウムアセチル物質 1.35 mol を反応させ、bp 186〜188℃の主留分 45.5 g をえた。

II-（1） エチルシクロメチルメチレン 128 g (0.5 mol) およびエーテル 200 cc の混合液を冷水に冷却、メチルマグネシウムアセチル物質 0.5 mol を滴下、3 時間反応後生成物を蒸留で分留し、エーテルを回収後、2 m のボットリュック方式精留塔を用いて分留し、bp 202〜203℃の留分 19 g をえた。

II-（2） エチルシクロメチルメチレン 0.5 mol およびエーテル 200 cc の混合液にメチルマグネシウムアセチル物質 1 mol を作用させ、同様に処理し、bp 183〜185℃の留分 27 g をえた。

II-（3） エチルシクロメチルメチレン 0.5 mol およびメチルマグネシウムアセチル物質 1.5 mol の割合で反応させると、留分は第 2 表の値を示す。

II-（4） エチルシクロメチルメチレン 0.5 mol およびメチルマグネシウムアセチル物質 2 mol の割合で反応させる。
第9回 メチルシチアシメチオメの合成
(MeO)₃SiCH₂SiMe₃OMe の合成

| (MeO)₃SiCH₂SiMe₃OMe | MeMgBr
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(mol)</td>
<td>℃</td>
</tr>
<tr>
<td></td>
<td>150-160</td>
</tr>
<tr>
<td>192</td>
<td>3.88</td>
</tr>
<tr>
<td>192</td>
<td>3.98</td>
</tr>
<tr>
<td>192</td>
<td>3.98</td>
</tr>
</tbody>
</table>

148℃の留分を再蒸留すればbp 146.5℃が主留分である。

IV- (1) (Me₂SiCH₂SiMe₂O)₂の合成 テトラメチルジメチルシチアシメチレン 19 g を氷水で冷却してつめ濃縮液 5 cc を
加えて振ると熱を出して反応する。水 10 cc を加え有機層を分
離。脱水後減圧分留し次の留分を得た。

1) 97-102℃ (20 mmHg) 1 g 一筋留分、2) 102℃(20 mmHg)
2 g 結晶、3) 再し正 7 g 留分

留分 3 は mp 28.5℃、nD₂₀ = 1.4325 の白色結晶で Bluestein
のち、(Me₂SiCH₂SiMe₂O)₂ と一致する。アセトン、ベン
ゼン、トルエンに可溶、水、メタノール、エタノールに不溶。

IV- (2) (Me₂SiCH₂SiMe₂O)₂ 100 cc を冷却して
かきませなら、メチルシチアシメチレン 54 g を加え1時間かき
まぜた後水 50 cc を加え分留し、有機層を乾燥、分留し bp 102-106
℃ (10 mmHg) の留分 61 g をえた。反応 66.6%。

これを再蒸留し、bp 105-106℃ (10 mmHg) の留分は nD₂₀ = 1.4329、d₄₀ = 0.8352、分子屈折率 = 95.40 cc (95.66 cc) である。

IV- (3) Me₂SiCH₂SiMe₂OSiMe₂ の合成 ペンタメチルモノ
メチルシチアシメチレン 35 g とシクロヘキサン 33 g
との混液を冷却し濃縮液 20 cc 中にかきませながら蒸留し
て 2.5 時間かきませたのち水 20 cc を加え、上層を分留乾燥後
し、未反応ペンタメチルシチアシメチレン 17 g 、中間層分留
33 g 、bp 177-180℃ の留分 10 g をえた。bp 177℃ 以下の留分を
さらに蒸留 20 cc を作用し上層の処理後さらに bp 178-181℃
の留分 9 g をえた。これらの留分を合し再蒸留し、bp 179-181℃
の留分は nD₂₀ = 1.4137、d₂₀ = 0.8115、分子屈折率 = 72.05 cc (72.29 cc) である。収率 40%。

なお Bluestein（前出）の方法では収率 3.2-7.5% である。

IV- (4) Me₆SiOSiMe₂CH₂SiMe₂OSiMe₂ の合成 テトラメチルシチアシメチレン 38.5 g とシクロヘキサン 64.5 g
との混液に濃縮液 40 g を加え 3 時間ふりませたのち (3) と同
様に処理し、ペンタメチルシチアシメチレン 41 g を回収後 bp 99-
100℃ (18 mmHg) の留分 24 g をえた。再蒸留し bp 129℃ (52
mmHg) の主留分は nD₂₀ = 1.4130、d₂₀ = 0.8522、分子屈折率 90.30 cc (99.33 cc) 収率 39%。
なお Bluestein の方法では収率 4.6-10.8% である。

IV- (1) Me₂SiCH₂SiMe₂OMe より Me₂SiCH₂SiMe₂Cl の合成

300 cc のフッ素中に濃縮液 40 g を入れ、氷冷しきませなら
から Me₂SiCH₂SiMe₂OMe 22 g を加えると酸化に透明な液とな
る。これを乾燥後ガラス 9 g を加え再分留し、二層に
わけられる。上層を蒸留し bp 153-155℃ の留分 11 g を
えた。収率 48.8% で分析値は次のとおりである。カッコ内は計
算値である。Cl = 18.90% (19.61%)。

V- (2) Me₂SiCH₂SiCl と CuO との反応 100 cc の三
つのフッソロ中に酸化水素 14 g を入れ、湿気を避けてペンタメ

※ () 内は計算値。
アクリルニトリルと塩化ビニリデンの共重合熱

（昭和31年3月2日受理）

長尾英夫・山口晃雄

I. 緒 言

ビニル重合反応はモノマーの二重結合が単結合となる反応であるから発熱反応であり、重合系の温度上昇速度は重合速度に支配される。その反応熱の概算は共重合体として二重結合の100 kcal/molと単結合の58.6 kcal/molから計算できる。すなわち（2×8.6）=100 kcal/molであるが詳細な値ではない。それらは二重結合をつくる炭素原子に付加する置換基によるエネルギー状態あるいはこれらの分子の結合したもののエネルギー状態が各種のモノマーで異なるからである。たとえば Evans および Tyrrell は、分子構造に大きく影響を及ぼすとされているメタクリル酸、アクリル酸およびそのエステルの重合熱に、アクリル酸メチル＞アクリル酸＞メタアクリル酸＞メタクリル酸メチルの差があることを実験的に追及している。著者らの取扱ったモノマーの場合には、この空間障害効果はアクリルニトリルにおいては微少、塩化ビニリデン 14.4 kcal/molがあたえられているが、重合熱はその平均値としてその組成より求めることはできない。それは一致（アクリルニトリル）＝（塩化ビニリデン）あるいは一致（塩化ビニリデン）＝（アクリルニトリル）のごとく結合して行く場合の重合熱はこの系特有のものであろう。なお組成の不均一、すなわち同一分子の組合を加わるような共重合においては、反応がさらに複雑となるが、すでに報告したように、この共重合系は等モル近傍では比較的組成が均一であることが認められているので、かくのごとく共重合におい

て重合熱の測定から共重合の本質に関する知見をうる目的で本研究を行ったものである。重合熱の測定には熱分析法5）によるものもあるが、著者らは Dewar ビンによる直接測定法を使用した。

II. 測 定 法

測定方法には蒸発5），水溶液7）の方法を参考とした。この方法は著者らの場合そのまま適用されるが、単体体濃度を高くしなければ初めの共重合が行われないこと。重合熱はさして大ない、温度上昇も相当に大きいので測定法および結果の取扱いを次のとりに改めた。Dewar ビンは内径約500 cc のもので密閉して鉄板の外筒を付し、さらに紙の外筒を巻き、互間に外温の温度計を入れる。測定前1時間以上室温に放置した水、単体、乳化剤、触媒水溶液を順次加える。まず水、乳化剤、単体を加えカマツ材により十分乳化安定させ、次に触媒を加え温、時間、温度を記録して行く。温度が増してから Comet 間の測定を行い、冷却曲線を求める。時間は次に示す方法から求め、恒温を十分に保った（普通一昼夜放冷する）容器の熱容量を求めると前報に載せる方法に従い、ガラス管に、油とともに封入した抵抗線に電流を通じ電圧、電流、温度、時間を記録し、さらに電流断開後も長時間測定を続ける。計算にあたっては次の仮定を設けるが、その誤差は微細なものと考えられる。

（1）重合前と重合後において熱容量の変化はない。
（2）触媒として過硫酸カリ、重塩酸ソーダを使用するが、両者の反応熱は重合の場合にも起こるものと考える。もちろんラジカルの発生はその過程の中反応であり、かつこのラジカルと単体の反応熱も考慮しなければならない。取扱いが複雑となるのでこれらを単に触媒のみの反応熱に等しいとおく、実際にはこの値は小さいものと考えられる。

乳化剤として花王石鹸製エマルゴール10）を使用した。

計算法は次のとおり行う。

\[
\frac{dT}{dt} + K(T - T_0) = \frac{Q}{W} \frac{dx}{dt}
\] (1)

6. 蒸発、工化 45, 1122 (1942).
7. 水溶液、物理化学の進歩 10, 252 (1936).