が大になるほど、同じ試料濃度を60分かきつめられた場合より、シリカの溶出量がより大なるためである。すなわち試料重量の増加よりかきつめ時間の影響が大であることわかる。クリンカーとセメントの値をくらべると、クリンカーの値の方が大きい。これはクリンカーの方が、溶出量に対するかきつめ時間が大きいことを示している。また、試料濃度の比が大になるに伴うにまって、溶出量比がそれに応じてだけ大にならない。これは試料濃度の小なるもので、シリカを溶出量にに対し、試料濃度の大なるものがシリカを溶出する量の小なることを示している。また濃度の低いほど、試料濃度の比に対する溶出量比は大になる。これは温度の低いほど、試料濃度の小なるものがシリカを溶出する量の、温度降下のために減少する割合に対して、試料濃度の大きいかた方が、シリカを溶出する量の温度降下による、減少の程度がより大であることを示している。

表 11

<table>
<thead>
<tr>
<th>温度</th>
<th>セメント</th>
<th>クリンカー</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>溶出量比</td>
<td>溶出量比</td>
</tr>
<tr>
<td>重質比</td>
<td>180 min</td>
<td>60 min</td>
</tr>
<tr>
<td>1.5</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>2.0</td>
<td>1.66</td>
<td>1.66</td>
</tr>
<tr>
<td>2.5</td>
<td>1.99</td>
<td>2.06</td>
</tr>
<tr>
<td>3.0</td>
<td>2.25</td>
<td>2.40</td>
</tr>
</tbody>
</table>

表 12

<table>
<thead>
<tr>
<th>温度</th>
<th>セメント</th>
<th>クリンカー</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>溶出量比</td>
<td>溶出量比</td>
</tr>
<tr>
<td>重質比</td>
<td>180 min</td>
<td>60 min</td>
</tr>
<tr>
<td>1.5</td>
<td>1.26</td>
<td>1.28</td>
</tr>
<tr>
<td>2.0</td>
<td>1.59</td>
<td>1.60</td>
</tr>
<tr>
<td>2.5</td>
<td>2.00</td>
<td>2.10</td>
</tr>
<tr>
<td>3.0</td>
<td>2.32</td>
<td>2.16</td>
</tr>
</tbody>
</table>

2-3 溶出量と温度の関係
溶出量が、温度の変化によりどのように変化するかを知るために、各試料濃度ごとに20°Cに対する溶出量比を求め、表 13、表 14 に示す。

セメントとクリンカーでは、温度の影響はクリンカーの方が大きい。また温度の影響は、試料濃度の低い方が大きい。すなわち試料濃度の低いほど、温度上昇による溶出量の影響が大きくなる。セメントより大きいことがわかる。セメント、クリンカーともに、180分かきつめ方で、60分かきつめした場合より温度の影響が大きいことが、60°C、20°C の値をくらべるとわかるが、40°C、20°C の比較では以下で示す。かきつめ時間が同じ場合、温度の高いほど溶出量は大であるが、40°C と 20°C との比較では以下で示す。温度の低い方が、60°C と 20°C との比較では以下で示す。

表 13 セメント

<table>
<thead>
<tr>
<th>温度</th>
<th>セメント</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180 min</td>
</tr>
<tr>
<td>60°C</td>
<td>1.18</td>
</tr>
<tr>
<td>40°C</td>
<td>1.03</td>
</tr>
<tr>
<td>60°C</td>
<td>1.08</td>
</tr>
<tr>
<td>40°C</td>
<td>1.00</td>
</tr>
</tbody>
</table>

表 14 クリンカー

<table>
<thead>
<tr>
<th>温度</th>
<th>クリンカー</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180 min</td>
</tr>
<tr>
<td>60°C</td>
<td>1.21</td>
</tr>
<tr>
<td>40°C</td>
<td>1.04</td>
</tr>
<tr>
<td>60°C</td>
<td>1.06</td>
</tr>
</tbody>
</table>

馬鞍山磁鉄鉱中に含有するスズ
昭和34年6月23日受理
貴家 忍夫

馬鞍山の磁鉄鉱はスズを含むのであり、これを抜去すると大部分のスズは精鉱中に取り去るスズの含有量は更に増加するといわれている。これを製鉄原料として使用するときにはスズを除去する必要がある。スズ除去のための基準的検討をして化学分析によってスズの含有量および分布状態を調査した。スズはマグネサイトの多い部分に多く存在しておりケイ酸塩の部分、およびケイ酸塩とマグネサイトの境界には少なかった。またマグネサイトの中に含まれているスズは精鉱採取場所により一定せず 0.01 ～ 0.2 % であった。X 線回折計を用いてスズの化合物状態を調べた結果、マグネサイト中のスズはスズ石 (SnO₂) の形であった。また電子顕微鏡および電子回折によってスズ石の結晶の大きさを測定した結果粒子の大きさは 0.04 から 0.13 μ の大きさもののが最も多く平均 0.1 μ であった。

1 概 言

馬鞍山の磁鉄鉱中のスズはマグネサイトの中に含有されており磁気分離によってはマグネサイトと分離することが出来なかったが、磁性、フッ化水素、硫酸には溶解したので試料を塩酸、フッ化水素酸および硫酸で処理し、鉄分、ケイ酸分等を除去した後、X 線回折計を用いてこの残分の組成分析を行い、スズ化合物の種類を調べ更に電子顕微鏡写真をとり、スズ化合物の結晶の大きさの測定を行って現在までに得られた結果について報告する。* 

* 東京大学工学部応用化学科工業化学教室：東京都文京区本富士町。

2 装置および実験方法

2-1 装置

－X 線回折計は、理学電機ガイガーフレックスを用い、X 線は CuKa でフィルターはニッケル箔を使用した。

－電子顕微鏡は日本電子光学 5 型を用い、コロジオン支持膜つりかけ装置電子加速電圧 50 kV, KSK, No. 20 乾板を使用した。

2-2 標準物質

－X 線回折に使用した標準物質、スズ石はボリビア産のスズ石の純結晶の部分を粉末して 325 メッシュ以下とした。

塩化カリウムは特級塩化カリウムを使用した。
マグネシアは1級マグネシアを電気炉を用いて1300〜1400℃で強熱した。なお上記標準物質はいずれもX線的に不純物を認めなかった。

2-3 スズ定量方法
2-3-1 全スズ定量方法 試料を過酸化ナトリウムで融解し、二酸化マンガンに全スズを吸着させて分離し、これを塩酸および過酸化水素水で溶解し、塩酸および塩酸に加えて酸度を調節し、ニッケルを用いてスズを還元した後ヨウ素標準液で滴定した。

2-3-2 塩酸に不溶解の残分中に存在するスズの定量方法 試料を6N塩酸で加熱溶解した残分を介し、これを灰化したのち過酸化ナトリウムを用いて融解し、塩酸および塩酸に酸度を調節したのもニッケル片を用いてスズを還元しヨウ素滴定した。

2-3-3 塩酸に溶解したスズの定量方法 上記不溶解物の硝酸を塩酸および塩酸で酸度を調節したのもニッケル片を用いてスズを還元しヨウ素滴定した。

3 鉱石中のスズ含有量および分布
3-1 鉱石中の分布状態を調べるために産出場所が遠い、かつ外観の違った径30〜40cmの鉱石7種を分析試料として全鉱および全スズの定量を行って表1のよう結果をえた。

<table>
<thead>
<tr>
<th>表1 全鉱, 全スズの定量結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料番号</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

表1の結果からわかるようにスズの含有量は場所により相違があり高品位の鉱石中に多く、ケイ酸塩の多い鉱石中に比較的少なかった。

3-2 鉱石中のいかなる部分にスズが最も多く含まれているかを調査する目的で塊鉱から鉱石の各部を、すなわちマグネタイトの多い部分、ケイ酸鉱の多い部分およびマグネタイトとケイ酸鉱の境界部をそれぞれ10〜15g取り出し分析試料として、これらの部分の全鉱、全スズの定量分析を行って表2のよう結果をえた。

<table>
<thead>
<tr>
<th>表2 全鉱, 全スズの定量結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料番号</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

スズ含有量の多い鉱石 表2 No. 1, No. 5, No. 8の試料を300メッシュ以下に粉碎したものを水中でマグネタイトによって分離した結果、および鉱石中のマグネタイトにポリピラスのスズを分別し、300メッシュ以下に粉碎して試料と同様に水中でマグネタイトで分離した結果を表3に示した。

<table>
<thead>
<tr>
<th>表3 磁気分離結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料番号</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

表3の結果からわかるように鉱石中の磁鉱鉱にポリピラスのスズ石を混合したものは、マグネタイトと完全に分離出来たが、馬尾鉱石中のスズ石を300メッシュ以下に粉碎しても磁気分離によってマグネタイトとスズを分離することが出来なかった。

4-2 塩酸によるスズの分離
磁気分離したマグネタイトの部分を塩酸に溶解して塩酸分塩酸に溶解する部分を除去してスズを分離する目的で6%塩酸を加える。

<table>
<thead>
<tr>
<th>表4 磁気分離したマグネタイト中の</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料番号</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

4-1 磁気分離
スズ化合物を磁性の強いマグネタイトと分離するために比較的

1) 島上, 高松, 神田, 咲樹, 分析化学 5, 379 (1956).
2) 須藤, 金属誌 8, 254 (1981).
3) 表国一, 鉱物化学分析全書 (1952).
4-3 X線回折計による測定結果

馬鞍山磁鉄鉱中のスズはマグネタイト中に含有されており、このスズは表4に示したように塩酸に溶解しなかったので、試料を300メッシュ以下に粉碎し磁気分離したマグネタイトの部分を6N塩酸と沸騰して鉄分等の塩酸に溶解する成分を除去した残分をX線回折計を用いて面間隔および回折線の強度を測定しポリビアのスズ石と比較した結果は図1のようであった。

![図1](image)

1はポリビア産のスズ石のX線回折図で、2はNo.8の試料を塩酸で処理した残分のX線回折図で少量の他の成分の回折線があるがポリビアのスズ石の回折線とよく一致している。3はNo.3の試料を塩酸で処理した残分のX線回折図で他の成分の強い回折線のために明確なないがスズの回折線と一致する回折線が認められる。

この残分のケイ酸分を除去するためにフッ化水素酸と塩酸で処理した残分の回折図は4であり、スズ石の回折線と一致する回折線の強度が増大している。上記X線回折計による測定結果から考察すると、マグネタイト中に含有されているスズ化合物はスズ石（SnO₂）と考えられる。

4-4 X線回折計による酸不溶解残分中のスズ石の定量結果

X線回折計による測定の結果、塩酸に不溶解の残分中にはスズ石の形体のスズ化合物が存在していた。この残分中のスズ石の形のスズを調べる目的でX線回折計によりスズ石の定量を行なって、化学分析によって定量したスズの値から換算したスズ石の値と比較した。スズ石と塩酸カリウムの等量混合物のX線回折図を図2に示した。これらの回折線のうち強度測定に用いる線として強度の強いこと、予想される他の物質との分離が行ない得ること、回折角度が著しく変わらないこと等を考慮してKCl: d=3.13Å，SnO₂: d=3.34Å，すなわち図2×0の回折線を選び、SnO₂とKClの回折線の強度比と重量比との関係を求めて、図3のよう

結果を得た。馬鞍山磁鉄鉱を塩酸あるいは塩酸とフッ化水素酸で処理した残分中のスズ石をKClを内標準物質としてX線回折計によって定量した結果と化学分析によって定量した結果を比較して表5に示した。

![図3](image)

表5 酸不溶解残分中のスズ定量化結果

<table>
<thead>
<tr>
<th>試料</th>
<th>化学分析</th>
<th>X線分析</th>
<th>不溶解の</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.8の酸化物</td>
<td>Sn(%)</td>
<td>SnO₂(%)</td>
<td>SnO₂(%)</td>
</tr>
<tr>
<td>HCl処理</td>
<td>7.72</td>
<td>9.73</td>
<td>10.1</td>
</tr>
<tr>
<td>No.1 HCl, HP処理</td>
<td>32.97</td>
<td>41.53</td>
<td>41.1</td>
</tr>
<tr>
<td>No.6 HCl, HP処理</td>
<td>33.00</td>
<td>41.58</td>
<td>42.0</td>
</tr>
</tbody>
</table>

表5の結果から考察すると化学分析値から求めたSnO₂の定量値とX線回折法によって定量したSnO₂の値は完全に一致している。しかしマグネタイトを塩酸または塩酸とフッ化水素酸で処理したとき不溶解であったので、マグネタイト中のスズはここにおいてスズ石の形である。しかしNo.8の試料を酸化処理したときにスズの一部はケイ酸塩の部分にも来た。このスズの約40%が酸化に可溶であった。No.8の試料のケイ酸塩の中に含有されているスズの化合物状態は明らかでない。

5 磁鉄鉱中のスズ化合物の結晶粒度

鈍石を塩酸処理した残分中のスズはX線回折計によって定量した結果、ごくとくスズ石の形態であったが、この残分を酸化除去し蒸発を用いて検討したが、スズ石の結晶を認めることが出来なかった。
5-1 電子顕微鏡による結晶粒度の測定

鉱石を80〜100 メッシュに粉碎し、塩酸で処理して鉄分等塩酸に溶ける成分を除去した残分をフッ化水素酸および水酸で処理してケイ酸分を除去したのも、再び塩酸で煮沸し、分解生成物を除去して電子顕微鏡写真を撮り結晶の大きさの測定を行なった。記載処理によって得た残分中のスズ含有量は98％であり、No.1 の試料は90％のスズが、No.8 の試料は70％のスズがケイ酸に不溶解であった。電子顕微鏡写真および電子回折写真を図4に示した。

1はポリビアのスズ石を粉碎したもの、2は島根県の鉱石を酸処理した残留物の15,000倍の電子顕微鏡写真および図1に示した部分の電子回折写真である。電子線回折の結果はいずれの粒子もスズ石であり、写真を一見してわかるように独立した粒子の大きさは十分な数グラム以下である。粒子の大きさを計測し、これを実際の大きさに換算すると 0.04 μから 0.13 μ のものが最も多く、平均 0.1 μであった。

* 結言

本邦におけるイオウの製鋼は主として焼取法によって進められていることとはよく知られている。この際に用いられる長持型式の鍵鉄製の釜（以下焼取釜と呼ぶ）は使用中大いに内部にスケールが生成し、ついには破損する。このスケールが硫化鉄系のものであることとはその生成される状況から考えて、容易に推察出来ることである。鉱とイオウとの反応は村上ら、Geil'd ら、Dravnieks お

図 4

イオウ製鋼用焼取釜に生成する硫化鉄

（昭和34年8月6日受理）

広瀬 一豊・矢野 勇

イオウ製鋼に用いられる焼取釜に生成するスケールの組成をしらべてこれが硫化鉄であることを確認し、スケールは大体において内外の層に分かれ内外の方がイオウ原子率が高いことを知った。

またスケールの生成鉱は鉱とイオウとの反応によるものであるが、スケール中に亀裂を生じた場合には、これ亀裂を通ってのイオウ蒸気の内部への浸入を無視出来ないと考えられることを明らかにした。さらにスケールの生成を阻止させる方法としてアルミウムを添加した小型の鍵鉄製試験釜をつくって、これについて実際の製鋼において試験を行ない、アルミウム添加の効果について検討した。著者の試作したアルミウムを添加した釜は、スケールの生成量はなくないが、加熱冷却のくり返しによって破損しないことが認められた。

1) 村上, 東京, 金属誌, 4, 201 (1940).