ガスタービンによるメタン（天然ガス）の変性

（昭和35年3月18日受理）

山崎三六*・三井光**

4サイクル内燃機関を天然ガスを原料とする合成用ガス発生器として用いる場合、すくれた組成のガスを生成し、同時に動力を回収できるであろうことを理論的に推定し、ガソリン試験に用いるCFR-エンジンを使用して実験的に検討した。

同じ反応をガスタービンの燃焼室を利用して一定圧力で生成させた場合の生成ガス組成、燃焼温度、排気温度および出力を計算した。それによれば、メタン・酸素の燃料上限近において、有効ガスが4サイクル内燃機関の場合よりも少なくて、80%～89%含ま、未反応メタンが少ないすくれた合成用ガスを生成すると同時に、熱効率は5.5～6.7%であるが、原材料メタン1 Nm³ 当り 0.55～0.67 kW/hr の動力を回収できることを知り、ガスタービンが優秀なガス発生器として使用できることを推定した。

1 構 言

天然ガスを水蒸気あるいは酸素により変化して、水素および酸化炭素を主成分とするいわゆる合成用ガスを製造する研究が盛んにおこなわれ、すでに工業化されたものも多い。

著者らは、4サイクル内燃機関を用いて天然ガスを酸素により分解させた場合の生成ガス組成、燃焼温度、排気温度および出力を算出し、さらにガソリン試験用のCFR-エンジンを用いて実験的に検討し、さらに報告した。

同じ反応をガスタービンの燃焼室を利用して進めた場合についての計算をおこなったので報告する。

2 計算の方法

4サイクル内燃機関の場合には理論オット＝サイクルを考えて計算したのであるが、ガスタービンの場合には図1のような構成を考え、図2のような理想サイクルによるものとして計算した。

量論比を1.0とし、過不足のメタンのモル数をαとすれば、

(1+α)は当量比を表わす。天然ガスを統一メタンと考え酸素との反応式（1）のように進行するものとする。

CH₄ + 2O₂ → aCO₂ + bCO + cH₂O + dH₂ + eO₂ + gCH₄

(1)

式（1）にもとづいて生成ガス組成 a, b, c, d, e, g をともめて、燃焼温度、排気温度、熱効率および出力を計算した。

2-1 圧縮温度 T₁

メタン・酸素混合ガスの最初の温度および圧力をそれぞれ T₁および P₁ とし圧縮後の圧力を P₂ とすれば圧縮温度 T₁は

T₂ = T₁(P₂/P₁)^(-1/2)

(2)

からもとめられる。T はメタン・酸素混合ガスの T₁～T₂間の平均圧縮率と比熱比である。

2-2 燃焼終了のガス組成および燃焼温度 T₃

定圧燃焼によるものとして燃焼生成ガス成分間の数の平衡反応を考え、それぞれの平衡定数を K₁, K₂および K₃とすれば式（6）の連立式がなりたつ。

2CO₂ → 2CO + O₂ K₁ (3)

H₂ + CO₂ → CO + H₂O K₂ (4)

CH₄ + CO₂ → 2CO + 2H₂ K₃ (5)

a+b+g=1+α

2a+b+c+2e=4

c+d+2g=2(1+α)

a+b+c+d+e+g=Sₘ

K₁ = p₀₁/p₀₄ p₀₂/p₀₅ b²e²p₁/a²S₁

K₂ = p₀₂/p₀₁ p₀₃/p₀₅ p₁² = dc/ad

K₃ = p₁² p₀₂ p₀₃ p₀₄ p₀₅ b²d²(ag)(p₁/Sₘ)

ここで Sₘおよび Pₘはそれぞれ燃焼生成ガスの全モル数および燃焼生成ガスの圧力をあらわす。

式（6）を解いて燃焼生成ガス組成 a, b, c, d, e, g をもとめて、燃焼温度 T₃は次式によって計算される。

T₃ = T₁ + [(1+α)Q/(Q-1)] · 10³ Sₖ Cₖ

(7)

式（7）において SₖCₖは燃焼生成ガスの T₃～T₅間の平均定圧比熱、Qはメタンの低位発熱量、Q₁は式（3）、(4)およ
(81) ガスタービンによるメタン（天然ガスの）変性：山崎・三井

（81）ガスタービンによるメタン（天然ガスの）変性：山崎・三井

び（5）の平衡を成立させるために消費される熱量である。

2-3 膨張終了のガス組成および温度 T_s

タービン中で膨張したガスの組成 $a', b', c', \ldots g'$ は式（6）の

P_s を膨張後のガスの圧力 P_4, S_4 を膨張ガスの全モル数 S_4

($a'+b'+c'+\ldots+g'$) と置きかえて解ることによってもとまるこ

排気温度 T_4 は式（8）のようにになる。

$$T_4 = T_3 / (P_3/P_4)^{(1/\gamma) - 1/\gamma}$$

式（8）

ここで T_3 は T_3 および温度 T_3 に関する平均定圧定容比熱比である。

2-4 熱効率 η および出力 P

最初の圧縮行程であるとあらわれる熱量を Q_3 とすれば、熱効率 η
およびメタン 1 mol 当りの出力 P kWe・hr は式（9）および

$$\eta = (Q_s - Q_3) / (1 + \alpha)$$

式（9）

$$P = 1.163 (Q_s - Q_3) / 22.41 (1 + \alpha)$$

式（10）

2-5 排気ガス

この反応を進行した場合式（11），（12）および（13）の平衡
を考え，排気ガスが生成しないものを仮定しておこなったガス組
成による平衡関係から排気ガス生成の可能性について検討した。

$$\text{CH}_4 \rightarrow C + 2 \text{H}_2 \quad K_1$$

式（11）

$$C + H_2O \rightarrow CO + H_2 \quad K_2$$

式（12）

$$2CO \rightarrow C + CO_2 \quad K_3$$

式（13）

表 1 おもな計算値

<table>
<thead>
<tr>
<th>原 売 燃 烧</th>
<th>燃烧終了時ガス組成</th>
<th>燃烧終了時（排気）ガス組成</th>
<th>発生ガスの熱出力</th>
</tr>
</thead>
<tbody>
<tr>
<td>$%$</td>
<td>$%$</td>
<td>$%$</td>
<td>$%$</td>
</tr>
<tr>
<td>T_s</td>
<td>T_s</td>
<td>T_s</td>
<td>T_s</td>
</tr>
<tr>
<td>CO_2</td>
<td>CO</td>
<td>H_2</td>
<td>H_2O</td>
</tr>
<tr>
<td>CO_2</td>
<td>CO</td>
<td>H_2</td>
<td>H_2O</td>
</tr>
<tr>
<td>CO_2</td>
<td>CO</td>
<td>H_2</td>
<td>H_2O</td>
</tr>
</tbody>
</table>

図 4 燃焼ガス組成

図 5 膨張（排気）ガス組成
図 6 総発生ガス量、有効ガス発生量
および水素：一酸化炭素比

図 7 熱効率および出力

3-1 原料ガス

3-2 燃焼の状態

5 ま と め

さらに報告した 4 サイクル内燃機関の場合と比較すれば、ガスタービンの燃焼室を利用する場合は燃焼温度が低く、有効ガス発生量がわずかに多く、未反応メタンの量が少ないなどの利点があるが、熱効率が低くなる。すなわち回収駆動力が少なくなる欠点がある。

しかししながら、ガスタービンの燃焼室を反応器と考え、メタンを酸素によって部分酸化すれば、メタン・酸素混合ガスの燃焼上限に近い領域、すなわち当量比 2.5 ～ 3.0 において燃焼ガスを生成することなく、有効ガス 80 ～ 89%、水素・一酸化炭素比 1.6 ～ 2.0 のすぐれた成分の生成ガスを生成すると同時に、熱効率は 6.7 ～ 5.5% で向き、原料メタン 1 Nm³ 当り 0.67 ～ 0.55 kW・hr の動力を回収できることが推定される。

すなわち、ガスタービンをもまた 4 サイクル内燃機関と同様に優秀な合成ガス発生器として使用でき、とくに大量のガスを小型の機関で消化できる要望したガス発生器として期待できる。

（昭和 33 年 4 月、日化第 11 年会講演）